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1. Tur following objects are contemplated in this paper :—

1st. The demonstration of a fundamental theorem for the summation of integrals
whose limits are determined by the roots of an algebraic equation.

2ndly. The application of that theorem to the problem of the comparison of algebraic
transcendents.

The immediate object of this application will in each case be the finite expression of
the value of the sum of a series of integrals, ={Xdx, the differential coefficient, X, being
an algebraic function, and the values of # at the limits being determined by the roots of
an algebraic equation.

drdly. The application of the same theorem in a new, and, as is conceived, more
remarkable line of investigation, to the comparison of functional transcendents.

The terms *algebraic’ and ‘functional’ are not here used by way of logical division
to indicate classes of transcendents wholly distinct, but the term functional transcendent
is simply employed to designate an integral {Xda in which X involves an arbitrary
symbol of functionality.

Under this third head of the comparison of functional transcendents will fall the most
important special result of the entire investigation. A case will arise in which, without
any limitation of the functional symbol, the several integrals included under the form
S\Xdz will close up, if the expression may be allowed, into a single integral taken
between the limits — oo and oo. The result is a very remarkable theorem of definite
integration, fruitful in important consequences. In its general form, this theorem is, I
believe, entirely new. A particular case of it was discovered by me several years ago,
and was published without demonstration in the Cambridge and Dublin Mathematical
Journal*, and in LiouviLLE’s Journal de Mathématiquest. A memoir by CavcHy on
integrals taken between the limits 0 and oo, contains also a very limited case of the
same theorem. It appears there, however, as an isolated result, quite apart from the
doctrine of the comparison of transcendents.

In the concluding sections of this paper I shall apply the results of this part of the
investigation to the extension of the theory of multiple definite integrals.

As respects the methods and processes which will be employed in this paper, the only

* Vol. iv. p. 14. + Tom. xiii. 1 Exercices, vol. i. p. 54.
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peculiarity to which it seems necessary to direct attention, is the introduction of a
symbol, differing in interpretation only by the addition of one element, from that which
Cavucuy has employed in his ¢ Calculus of Residues.” Of the nature of this connexion I
was not aware until my researches were nearly completed; and I should then have
abandoned my own symbol and adopted the other, already associated by the labours of
its distinguished inventor with so many important discoveries in the higher departments
of the integral calculus, if it had not appeared to me that the several elements combined
in the interpretation of the former symbol were so allied that no one of them could
without a manifest defect of completeness be omitted. It seemed to me also that many
of CaucHY’s own applications of his symbol would gain in simplicity and in generality
of expression, by the adoption of the more enlarged interpretation.

2. Beside the above special objects, in the attainment of which whatever claim to
originality this paper may possess will consist, I have proposed to myself, as a general
object, the simplification of a branch of analysis which possesses some practical and
much speculative importance. To this object the introduction of the symbol above
referred to, contributes in a very important degree. The necessity of simplification
will, T think, be admitted by all who are acquainted with the literature of the subject.
As presented in the writings of ApeL and of those who immediately followed in his
steps, the doctrine of the comparison of transcendents is repulsive from the complexity
of the formule in which its general conclusions are embodied. The particular result
known as ABEL’S theorem, the only one of its class which has been adopted into English
works of education, will at once suggest itself in confirmation of this remark. Perhaps
this complexity will not be thought surprising if we consider the nature of the problems
involved,—the discovery of finite relations among integrals which derive their very name
from the circumstance that individually their finite expression transcends the powers of
analysis. On the other hand, and this is a juster ground of inference, the theory upon
which such applications rest is far from being difficult or recondite, and, considered &
priors, should be capable of a simpler analytical development than it has yet received.
1 hope that I shall be able to show that this anticipation is confirmed by the results of
the present inquiry. Simplicity, though it is not to be gained at the expense of that
which is the chief object of scientific methods, the discovery of truth, is nevertheless a
highly valuable quality. And so far from being inconsistent with generality in the
processes and the results of analysis, it is sometimes an indication of the measure of our
approach to completeness and unity. I think that this is more especially the case
where, as through the labours of ApzrL in the present instance, the subject matter of
investigation has been clearly defined, and the entire series of methods and results
foreshown to be the evolution of some one general principle or idea.

3. It will be proper, before entering upon the special investigation, to give some
general account of the doctrine of the comparison of transcendents. In doing this, T
cannot but refer to the able report of Mr. Lesuie ELuis on the Progress of Analysis,
published in the Report of the British Association for 1846. It contains a most valuable
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summary and criticism of the chief contributions which have been made, both by English
and by foreign mathematicians, to the theory of transcendental integrals in all its
branches. I had completed my investigations on that particular branch of the theory
which relates to the comparison of transcendents before I had the opportunity of studying
Mr. ELuis’s report; but I know of but a single point, and that of no real importance, in
which I should be disposed to dissent from the general views which he has expressed on
this subject.

The fundamental idea upon which the doctrine of the comparison of transcendents
rests may be thus stated. We know that where we cannot express in finite terms the
values of the roots of an algebraic equation, we can nevertheless finitely determine the
values of various symmetrical functions of the roots, ¢. ¢. their sum, the sum of their
squares, the sum of their binary products, &c. Those values will be expressed in terms
of the coefficients of the equation, or, speaking more generally, of the independent con-
stants involved in any way in the equation. If we represent the equation in the form

E(z, a, a,, ..2,)=0, . . . . . . . . . (L)
E being a functional symbol, and @,a,..a, the independent constants, and if we repre-

sent the roots of the equation by 2, &, ..2,, then whatever the interpretation of the
functional symbol ¢ may be, the expression

o(x)+o(x). . +olx,) . .« . . . o oo (2)
will denote a symmetrical function of the roots, whose value, in terms of a,, a,, ..a, can
always be determined when ¢(z;) is a rational function of #, and can very often be
determined when ¢(«;) is an irrational function of ;. Thus the value of the sum =¢(z),
where the different values of & are the roots of an algebraic equation, can often be found
when the values of the separate terms of which that sum is composed cannot be found.

Now this suggests to us the question whether it is not possible in certain cases to find
the value of the integral-sum ={Xdz, where we cannot find the value of the separate
integrals involved in that sum. What we usually mean by finding the value of the
single integral {Xdz, is the expressing of the value of that integral in terms of its superior

limit, an arbitrary constant being annexed, and consists, in fact, in determining the
function ¢(«;) in the equation

f"xczx=¢(xi)+c. N D)
The suggested problem is the finding of the value of the integral-sum
f‘de+f2de..+f”de, W

where @, &,, .., are the roots of an algebraic equation, which we will suppose to be (1).
Representing (4.) by = iXda:, the solution of the problem will, according to the nature
of the analysis employed, assume one of the two following equivalent forms, viz. either

the form gj'“"deng(a” Oy ..0,)+C, . . L, L (B)
9 E 2
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@, @, .., being the independent constants in the equation (1.) by which the limits are,
determined, or the form

ijide:¢(x,,x2,..xn)+C, N G|

W@y, &y . . &,) being a function, and manifestly a symmetrical function, of the limits
Xy, Xy .. T, FEither of these forms may be converted into the other by means of (1.),
but the first is the one to which we shall give the preference.

We may remark, that if in the equation (1.) @, @, .. a, vary, the values of «,
determined by the solution of that equation, will vary also. For each set of values of
a,, Qy, .. 0, there will exist a simultaneous set of values of . We may in this way
consider the variables # in the several integrals under the sign 2 as always, in the course
of their transition from the lower to the upper limits of integration, determined by the

roots of the equation E(z, a\, ay, .. ,)=0.

According to this more general view, a,, g, .. @, become a set of variables with which «
is connected by the above equation, but the variation of # in each integral represents
only the variation of one root of the equation. And the determination of the values of
o at the upper or at the lower limits of integration by the solution of that equation,
particular values being assigned to a,, a,, .. @, is only a special case of the determina-
tion of the simultaneous values of the variable z.

4. Thus the problem with which we are concerned may be more briefly expressed in
this form. Required the value of the expression 3\Xdx, the simultancous values of x in
the several integrals being determined by an equation of the form

E(x, ay, ayy .. a,)=0, . . . . . . . . . (7)

in which a,, a, .. a, are variable quantities, by the assigning of particular values to which
in the solution of the equation, the particular values of x at the limits of integration are
determined.

The solution of the above problem is to be effected by giving to the expression ESX(Z.@'
the equivalent form {3Xdz, transforming 3Xdx into a complete differential with respect
to the variables a,, a,, .. @,, and then effecting the integration. For this reason I shall
designate (7.), or, as it may for convenience be written, E=0, as the ¢ transforming equa-
tion,” except when it is employed to determine the limits, in which case the designation
of ¢ equation of the limits’ will be preferable.

For the solution of the problem, as thus stated, it is usually necessary that the form
of the function E in the transforming equation, and the form of the function X under
the sign of integration, should have a certain connexion. The connexion implied is the
following. The transforming equation must in general be such, that it may be possible
by means of it to reduce the differential expression X under the sign of integration to a
form ¥(z, a,, a,, .. @,), which, considered as an explicit function of # and of a,, a,, .. a,,
shall be rational with respect to #. This is not a necessity & priori. It is a necessity
founded in the limitations of the powers of analysis.
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9. To illustrate these remarks, let us take as an example the integral
dz
vitat’
which is known to express the length of the arc of the lemniscate. The following would
be a legitimate example of the kind of problem which it is proposed to investigate, viz.
Required the value of the expression

3

\/1+w4

the simultaneous values of 2 in the successive integrals being given by the roots of the
equation i
1+ot=(ata+a2®?, . . . . . . . . . (8)
reducible to the form
- :

m3+(a+-é—)x2+ax+a—2—l—=0. N D)

We shall represent these roots by @, «,, ;.
The solution of the problem would then assume either the form

zj““ §O+C . (10)

C being the constant of integration and ¢(«) the function to be determined, or the form
d

p> mi 4-.-4;(:01,0:2,:03)—]—0 e 8 5

wherein  is to be determined.

It will be observed that the transforming equation (8.) is such as to enable us, in
accordance with the requirement of art. 4, to reduce the function under the s'gn of
integration to a form in which, considered as an explicit function of 2 and e, it is rational
with respect to #. For it gives

dz ? dz ) ¢
e P ¢ 05

the second member of which fulfils the condition in question. It is to be remarked,
however, that @ and « are still connected by the equation (8.) or (9.), and that we are
not permitted to integrate as if @ were constant.

In the above problem, only one arbitrary element, a, presents itself in the transform-
ing equation. There might, however, have been two or any greater number of arbi-
trary elements. Thus the equation might have been

14-a'=(a+-bx+2°),

or

®+2a , 2—1
2+ e +m~+‘i§z-_—_o, N ¢ 3

and the solution of the problem would then have assumed one of the two following
forms, viz. either the form

25‘4/1+a4—¢'(a’ H+C, . . ... (14.)
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or the form .

> V%;«#(x,, Gw @)4+C. . . . . . .. (15)
From these solutions the corresponding solutions of the previous and less general pro-
blem would be obtained, in the one case by making 4=1, in the other by imposing
upon the limits a,, &,, #, conditions thereto equivalent.

6. And not only the solution, but the original statement of a problem may be exhi-
bited in the two forms above described. Instead of supposing the limits determined by
an equation involving arbitrary quantities in its coefficients, we may suppose them directly
connected by symmetrical equations, ¢. e. we may suppose those relations explicitly given
which are only émplied in the equation determining the limits, and can only thence be
deduced by eliminating the arbitrary elements. Thus (9.) furnishes us with the three
following equations:

T+t 2=—a—3.

TZy+2y05 258 =0
1—a?

By ply= .

From which, eliminating the arbitrary quantity ¢, we have
@y &y By =0,y + 8o 28— 5|
2$1$2$3=1—($,$2+$2$3+$3$1)2 f

The problem first considered now assumes the following form. Required the value of
the integral expression

(16.)

Cdz
Vit
when the superior limits @, ,, 2, are connected by the explicit relations (16.).

The second problem, similarly transformed, would, as there are two arbitrary elements
to be eliminated, lead to a single equation between 2, 4,, ;, in place of the two equa-
tions (16.).

7. We may observe, from the above examples, that when the number of integrals to
be added is three, the existence of two arbitrary elements in the equation of the limits
involves the existence of one symmetrical equation among the limits, and the existence
of one arbitrary constant in the equation of the limits involves the existence of two
symmetrical equations among the limits themselves. And thus generally if there béy n
integrals to be added, the existence of » arbitrary elements in the equation of the limits
will involve the existence of n—# symmetrical equations among the limits. The con-
verse of this proposition is obviously true also. If any number 7 of symmetrical equations
among the limits z,, 2,, .. #, are given, and if we regard a,, @,, .., as roots of the equa-
tion of the nth degree, ‘

T+p,x 'l+10293'”_2- -+]0n=0,
the symmetrical conditions referred to, will, by the theory of equations, establish among
the coefficients p,, p,, .. p,, a system of relations by means of which we can determine 7 of
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those coeflicients as functions of the others deemed arbitrary,—or choosing in some other
way n—7r arbitrary elements, express all the coefficients by means of those elements.

It is further seen that in the one form of the problem the greater the number of
arbitrary quantities in the equation determining the limits,—in the other form the
smaller the number of symmetrical equations connecting the limits with each other,—
the more general is the statement of the problem itself.

8. The Norwegian and German mathematicians, by whom this branch of analysis has
been chiefly cultivated, have almost universally followed ABEL in his mode of stating
the general problem, . e. they have regarded the limits as roots of an equation involving
a greater or less number of arbitrary elements in its coefficients. Mr. Fox TaLsor, in
his interesting papers *“ On the Comparison of Transcendents,” published in the Philoso-
phical Transactions for the years 183637, has in the earlier examples of his method
expressed by symmetrical equations among the limits the conditions to which the latter
are subject: in his later examples he adopts the more succinct notation of ABEL. Indeed,
this mode of statement, as it replaces a system of equations by a single equation from
which such systems may be considered as derived, is far better suited to general investi-
gations, and will be adopted in this paper.

9. The complete solution of the problem of the comparison of transcendents, as above
explained, involves two distinct steps,—1st, regarding the equation

E=0 :
of (7.), art. 4, as an equation expressing the dependence of the variable # upon the
variables a@,, @,, .. @,, we must seek to convert the differential expression =Xdx into a
complete differential relative to @,, @, .. @, as independent variables, and which will there-
fore virtually be in the form
SXdr=Ada,+Ada,..+Ada,,

each of the differential coefficients A, A, .. A, being a function of a,, a,, .. @,; 2ndly, we
must integrate this expression.

The introduction of the symbol of operation adverted to in art. 1 will enable us to
dispense with the explicit determination of the coefficients A, A,,.. A,, and to reduce
the corresponding differential expression to one involving only a single variable. I shall
now proceed to define the symbol in question, and to investigate its chief properties.

Definition and Properties of the Symbol ©.
10. It is an evident consequence of TAYLOR’S theorem that we can develope any func-
tion of @, f{#), in ascending powers of £—a, provided that neither f{«) nor any one of its
differential coefficients becomes infinite when #=a. To effect this development, we have
only to assume #—a=z; then r=a+z, whence

fl@)=f(a+2) Q 3
=f(a)+/ (@)e+f"(a) {5+ &c. !>

2 1 (1)
—f(@)+f (@) w—a)+f"(@) et + & |
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Now f(«) being as above, let F(o)= = 3),,, where m is an integer. Then

a (m—1)(¢g m) (g m+1) (g —a

Here we obtain, as before, a development of F(«) in ascending powers of #—a, but the
development begins with negative powers of that quantity. To this species of develop-
ment we shall have frequent occasion to refer, and no doubt after this explanation will
arise as to what is meant when we speak of the development of any function F(z) in
ascending powers of 2 —a.

These things being premised, let the symbol © be thus defined, viz. If ¢(x)f(x) be any
JSunction of x composed of two factors p(x) and f(x) whereof ¢(x) is rational, let

ole(@)]f ()

denote the result obtained by successively developing the function in ascending powers of
each distinct simple factor x—a in the denominator of ¢(x), taking in each development

the coefficient of 35'—}-_5’ adding together the coefficients thus obtained from the several deve-

lopments, and subtracting from the result the coefficient of '1;2 in the development of the same
Sunction ¢(x)f(x) in descending powers of x.

It is seen from the above that the interpretation of © is relative. It directs us to
obtain certain developments, but the nature of these developments, if we except the last
of them, depends upon the nature of the function within the brackets [ ]. Thus while
in the expression ©[¢(2)]f(«) the operation of the symbol © extends over the entire func-
tion ¢(x)f(x), the interpretation of ©, by which the nature of that operation is defined, is
derived solely from the factor ¢(x).

Thus to take an example of some generality, let it be required to deduce an expres-
sion for

9[(1'——-11 ]f(w) e (3

where f(2) denotes some function of 2 which does not become infinite when #=a or &.
The distinct simple factors in the denominator of the function within the brackets [ ]
are r—a and x—b. If we make x—a=z, or r=a-+2, we have to develope

Ty tapfla+e)

. . . 1. . .
in ascending powers of z. The coefficient of - in that expansion is

A @)

Again, making #—b=z and #=05-z, we have to develope the function

b+z
22((17 +a+z)f (6-+2)
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in ascending powers of z. The development is

bf(6) | d b3f(d) 1 @ B0 ,
zQ{b o T& 5=a* T3 W 1—a” +&c}
in which the coefficient of -21— is
d Bfib) 5
Lastly, the coefficient of % in the development of the function
2*flw)
(z—a)(@—0b)

in descending powers of # being represented according to a familiar notation by

»*fla)
Clomaomgy ~ - - e (6)

we have, on adding (4.) and (5.), and subtracting (6.) from the sum,
il @*f() b“’f( b v*f(@)
9[(x—a)(m—b)2]f(x)—(a eta i~ g - - ()

As a particular illustration, let f{z)=log (c—}-;:), and let us seek the value of the last

term in the above expression. Now

z* a-+2b
(z—a)(z—b2— + x? + &e.

on developing in descending powers of , and
1 1 1
log <0+5) =log e+ — s+ &e.
Multiplying these together, the coefficient of L in the result is loge. Whence

a log<c+ ) b? log<c+b>

e[(w_—ﬁ]logG'*‘:?) (=0 + bma—logo - - (8)

in which it only remains to perform the differentiation in the second term.

Formule applicable to the determination of the result of the operation © in any case,
may readily be found by the aid of Tavror’s theorem. Thus we should have, f{«) not
becoming infinite when o=« or =20,

o[ smroVO=rr (@)

da\"t fl) fl@)
+l 2...(n— 1)(0[6) (b—a)™ »—C “(z—a)"(z— b)
an expression in which the general law of such formulee is manifest.
If there be n distinct simple factors in the denominator of the rational fraction within

the brackets, the result of the operation © will consist of n-+1 terms, the first # of which
MDCCCLVII. 5F

(9.)
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will be determined as above by TaYLoRr'S theorem. The n-+1th term will involve the
operation denoted by the symbol C,, and it is by this term only that the interpretation

of © differs from that of Cavcny’s symbol, €. We have in fact
0=8—Ci, . . . . . . . . . .. (Q0)

the complete interpretation of @ involving two distinct elements.
It happens in certain problems that one of those elements alone presents itself, the
symbol ©® becoming equivalent either to & or to —C,. In other problems they both

&

appear, but I am not aware of any problems in which the vanishing of one of the
elements is not due to some special circumstance of restriction or limitation affecting the
interpretation of the symbol © in the case supposed. In a Note to this paper I have
endeavoured to illustrate the above remark by employing the symbol © in certain pro-
blems, in which CaucHY has made use of the symbol of residues, and to that Note the
reader who is interested in the comparison is referred. :

11. The properties of the symbol © are now to be considered. The two following are
the most important of them :—

1st. The operation © is distributive as respects both the functwn without and the function
within the brackets, provided that those functions do not become together infinite for any
Jinite value of x.

Proor.—First, as respects the function without the brackets, we have the theorem

OLp(2)](fi(x) /@) . +f () =6[e(2)] fi(x)+6[e(a)] /(). . +O[e()] fu(w) s (L)
for the coefficient of a pafticular term, as x—i—:l, ;c, &c. in the development of a function

is equal to the sum of the coefficients of all the corresponding terms in the development
of the several component functions from which the proposed function is formed by
addition.

‘Secondly, as respects the function within the brackets, we have the theorem

ofey(2)+ey(2).. +o.(2)]f(2)=0[e(x)f(w)+Oleu ()] f(2).. +Olpu(2)) (). . (2)

Here, it is to be observed that @,(#), ¢,(2), ..¢,(#) represent any rational fractions into
which the rational fraction ¢(2) within the brackets [ ] is resolved. Thus the theorem
might be written in the form

o[e(2)]f(#)=0[g:(x)]f(2)+O[e ()] f(®)-- +9[¢>n(w)]f(:r), Coe (3)
- p(@)=0,(2)+0.()..+0.(2).

To prove this theorem I shall show that it is necessarily true for each of the opera-

tions into which © is resolvable. Let one of the distinct factors of the denominator of
¢(w) be #—a, then one of the component operations in © consists in developing in

(3}

wherein

@scending powérs of #=a, and taking in the development the coefficient of 1 Now
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whether this operation be performed at once upon the function ¢(x)f(x) or separately
upon the several functions

(@) f(2), e)f(@). - oul(2) f(2)
of which that function is composed, and the several results then collected together, is a

matter -of indifference. If we represent this part of the operation © by R, we have
therefore

Re(z)f(#)=Re\(«)f(@)+Reu(@)f(@) .. +Rou(@)f(@). .« o (%)
Now any term, Rp,(2)f (), in the second member of the above will either form a part
of the corresponding term O[¢,(2)] f(x) in the second member of (3.), or will vanish. The
former will obviously be the case if #—a is contained in the denominator of ¢(x); the
latter will be the case if #—a is not included in the denominator of ¢,(a), for then the
function ¢,(x)f{x) not becoming infinite when =@, is developable in a series of the

form A+B(x—a)+C(x—a)*.. Art. 10, and in this series the coefficient of — 1is0.

X—a
Hence, all the terms in (4.) are contained in (3.); neither are there any terms resultmg
from the component part of the operation © denoted by R which are not contained in
the second member of (4.).

Hence, if we cause R to stand in succession for each of the component operations
of ©, and add the several equations thus obtained and typically represented by (4.)
together, we shall obtain the theorem (3.).

As an example, we have

o wita |fwy=o[ =, [ An+o| 7 [
which is easily verified, since the first member gives

2af(x)
flay=fi=a)=0y 0
and the second member
f z
fo—fl—a)—~c, 22 v o, 1,
an equivalent result.
2ndly. If f(x) be a rational and entire function of x, we have always

Proor.—As f{«) must be of the form 2As’, ¢ being an integer, we have

ole(x)]f(z)=6[p(x)|2A2"

=3A0[¢(x)]a*
by the last proposition, Thus we have to consider a series of terms of the form

Again, ¢(z) being a rational fraction may be resolved into a series of terms which will
be of the form aa™ or of the form '(w——-ljc? Hence, availing ourselves of the distributive

5r2
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property of © with respect to the term within the brackets, we see that (6.) is resolvable
ultimately into a series of terms falling under the two typical forms

o[a™]a', 6[@_ ]

All terms of the first form obviously vanish, since they can have no negative indices.
It only remains, therefore, to consider terms of the second form.
First, let ¢ be equal to or greater than #. Then putting #—a=z, and x_a-l—z, the

(@+2)

coefficient of - in the development of the function =, to which ——= - )n isreduced,

in ascending powers of z will be

(i) (i—n+2) . |
e N (8

. 1. . S
and the coefficient of — in the development of the function e

(@#—a)"

in descending powers

of z will be
n(n+1)..0 .
'1.2..(1._”_'_1).0; oo oo oo oo (8)

These expressions are equal, as may be shown by equating them and clearing of fractions.
Hence, in this case,

o[z )o=0 . . . . . .. ()

Secondly, if i=n—1, each of the above expressions (7.) and (8.) reducing to unity, the
equation (9.)is still true.

Lastly, if ¢ is less than n—1, neither will any term containing % present itself in the

. . 1. .
ascending development, nor any term containing — in the descending development, so

that the equation (9.) remains true in this case also.
Wherefore the theorem is proved generally. See Note A.

General Theorem of Transformation.

12. The foregoing properties of the symbol © have an important bearing upon the
general theorem for the transformation of integrals under the sign =, to the demonstra-
tion of which we shall now proceed.

TuroreM.—If E=0 be an equation connecting the variable x with another set of variables
Ay By, -+ 8y, the function B being rational and entire with respect to x, and if' ¥ be any func-
tion of x and of a,, a,, .. a, which is rational with respect to x, then, provided that F does
not become infinite when E=0, we have

SFdo=0[Fl,

where d indicates complete differentiation with respect to the variables a,, a,, .. a,, and the
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, , , . . L 3E .
symbol © directs us, according to previous definition, to develope the function ¥ 3 in
ascending powers of x—h,, x—h, .. the distinct simple factors of the denominator ofA F,

. . . 1 1
to take in those successive developments the coefficients of -—5— g dc., and from the
1 2

sum of these coefficients to subtract the coefficient of % in the development of the same
Junction in descending powers of x.

The object of this theorem will become apparent if it be compared with the statement
in Art. 4. It will be observed that E stands for the rational and entire function
E(x,a,, a, .. a,), and F for the rational function F(z, @,, @,..,) in that article. Thus F
is that rational function of 2 to which the differential coefficient X in the integral
{Xda is supposed to be capable of being reduced by means of the equation of trans-
formation E=0.

DemonstraTION.—13. First, it will be necessary to prove the following subsidiary
proposition :—

ProrosimioNn.—1If ¢(x) be any rational function of x, and if E=0 be any equation
rational and entire with respect to x, by which x is connected with a new set of variables
ay, Ay, . . A, then, provided that ¢(x) does not become infinite when E=0, we have

So(a)=—Oe(a)]) i

Proor.—As ¢(x) is a rational function of a, it is capable of being resolved into a series

of terms, each of which is either of the form aa’, or of the form (—x—__a—p)i, @ being constant,

and ¢ an integer.
~ Consider then, first, the expression

D ¢

the different values of # in the several terms under the sign = being roots of the equa-
tion E=0. Representing these roots by @, ,, .. «,, any two or more of which may be
equal, we have ‘

E=A(e—a)(e—2,)..(—2,), . . . . . . . (2)
A being constant. Hence

d 1 1 1
BosB= b o (3)

Developing the several terms of the second member in descending powers of x, the

. . 1 .
aggregate coefficient of _7 will be
4+, .. i,
20

or
Hence

; . . d . . .
Saxi=a X coeflicient of ;}T{ in the development of log E in descending powers of a.

. . . d . .
= coeflicient of i in the development of a2’ 7-log E in descending powers of .
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Now O[ax’] % log E = —coefficient of % in the development of aa’ % log E by the defi-

nition of O, since, as the function within the brackets is entire, there will be no ascend-
ing developments. Hence

, A
Sar'=—0[ar]-logE . . . . 0 00 (4)
Consider, secondly, the expression
. a
= (e—p)"
Now expressing (3.) in the form
d 1 1 1
R I oy R )

and developing the several terms in the second member in ascending powers of z—p,
the aggregate coefficient of (#—p)™~' will be

—{( )‘+(w-’ﬁ) —l_(@“1 ’}z—z(}%@—f

Hence E(x T — coeflicient of (#—p)™"in the development of - loo E in ascending
powers of & —p,
== —coefficient of ;é; in the development of @——_1:}3-)7 d% log E in ascending
powers of a:-—-wp ;
E(x fp) — coeflicient of ——;9 in the development of z-w-—T p log E in ascendlng
powers of x—p.
But 8[ ] 7, log B = coefficient of “7 in the development of — [r= _p) I lob E in

ascending powers of &—p.

For 1st, the only distinct simple factor in the denominator of the expression within

the brackets is #—p; 2ndly, there will be no term of the form é— in the development

of —

= p) logE in descending powers of z, the first term of that development being

. na
evidently 7. Hence

3= 9[(xp]dzlogE Ce e (B

It appears from the above, that when we decompose the rational fraction ¢(z) into a

series of terms gb (®); +¢:(2).. +¢n(2), which are individually either of the form aa’ or

of the form —— o e have

(z—p)’ p
20,(2)+304(®). . +20,(2)=—0[0:()] 57— —O[eu(a)]—;

- =—0[0,(@)+ () .. +u(w)] =

dlogE dlog E

dlogE

~0[en(®)] =,

dlogE
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by art. 11. Whence ,
~dlog E
Sp(a)=—0[¢(z)] “fo—
which is the expression of the subsidiary proposition in question.
By this proposition, 2¢(«), when the different values of & in the terms under the sign
2 are the roots of an equation E=0, is determined as a function of any independent
quantities @,, @, .. @, with which @ is connected by that equation. In order that these
quantities may be independent, it is, of course, necessary that their number should not
exceed the index of the degree of the equation E=0.

(6.)

14. 1t may be well before continuing the demonstration to exemplify the theorem

just obtained. Suppose it then required to determine the value of the expression E —

the values of x being the roots of the algebraic equation pa’+4(l—p)r4¢=0. Here

we have
2px+1—p
9[‘ -—a:]pw 2+ (1—p) w—l—q

z pxr+1—p
z—a " pat+(l—piztq

Developing the function

in ascending powers of ¥—a, the coefficient of ~— will evidently be

2pa+1—p
T %+ (—platq

Again, developing the same function in descending powers of , the coefficient of é will
be —2.
Hence
r 2pa®+ (1~pla (1—p)a+2q
22&?&“ —ﬁg+(1—p)a+q+2_ a?+ (1 —pla+qg (7.)

which is easily verified by the known theory of equations.

The quantity @ may be itself a function of p and ¢ without affecting the truth of the
above result. The reasoning by which (6.) is established remains quite unaffected by
the consideration whether the function ¢(«) contains, together with a, any of the inde-
pendent quantities @,, a,, .. @, or not, provided only that if they do enter into its expres-
sion they enter determinately, e. ¢. that the same value which is given to any radical. as
A1+ in one of the functions ¢(z) shall be retained in all.

15. Now let us resume the expression SFdx, in which the values of & are subject to
the condition

E=0.
As by this equation the value of 2 is made to depend upon the quantities @,, @,, ..w,, we
have, on differentiating with respect to all the variables at once,

dE dE dE dE . 5
Fx—dx+ﬁad“1+2a;da2"+%:d“r=0' N 8
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Or if we appropriate the symbol & to express complete differentiation with respect to

A1y Oy« Uyy I
az dx-l— dE= 0.
‘Whence
3E
do=— ok (9.)
dz
‘Wherefore
FE
EFdx_—_— IR (10.)
dz
. . . . . . FE
Now F being a rational, and E a rational and entire function of &, the expression TR
dw
will be rational with respect to &, whence, by the subsidiary proposition just demonstrated,
FiE 3E Jdlog E
2yE =—0 F A
dz N dar
Therefore
dE
— ol wEd
SFdr=0 I“ZFE T (11.)
dx

Now the distinctive part of the performance of the operation ® in the second member,
consists in developing the entire function

dE
SE _dr i
Fonx % or P (12.)
p

in ascending powers of certain simple factors of the form #—p, those simple factors
being, 1st, such as are found in the denominator of F; 2ndly, such as are not found in

the denominator of F, but are found in the denominator of d_E'

d
the result of that portion of the operation © which depends upon the latter class of
factors is 0. For the only factors of the form #—p which produce terms of the form

It may be shown that

;;i—p in the ascending development of (12.), and which are not found in the denominator

of F, must be found in E. Let 2—p be any such factor, then we may write

E=H(z—p)",
where H does not contain 2—p,
Therefore
(x—-p)"‘ﬂ-l—mH(x—-p)"“"Sp (x—p)SH —mH8p
dE"‘ dH JH . (13.)
= tmHE—pn (@—p) ol
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The denominator of this expression does not contain #—p as a factor. Hence there
will be no factor of the above description in the denominator of the fraction within the
brackets, and therefore no corresponding development in the performance of ®. Thus
the only factors which produce any effect are those found in the denominator of F. The
part of the operation © expressed by —C, is of course unaffected by the nature of the

4

function within the brackets.
On these accounts then the theorem (11.), seeing that its second member indicates the

performance of the operation ® on the function F@, the interpretation of that operation

being derived solely from the factor F, is reduced to the comparatively simple form
3k
2Fde= @[F]F e O 9

And in this form it constitutes the general theorem of transformation which it was
required to demonstrate.

Application of the general Theorem of Transformation to the Comparison of
Algebraical Transcendents.

16. In treating of the algebraical transcendents, I shall first exemplify the direct
application of the general theorem of transformation to the solution of special problems,
and for this application I shall select by preference examples known and familiar. T
shall subsequently apply the theorem to the investigation of general formule from which
the solution of all special problems may be derived.

There is no difficulty in the direct application of the theorem to special problems.
The following directions will meet every case.

Let 3 {Xdx be the expression whose finite value is to be found, the simultaneous values
of # being determined by an equation

X=F(a,0,..0,), . . . . . . . . . . . . . (L)
@y, @y, .. @, being the new variables in terms of which the value of the integral expression
is to be obtained. The second member, which we shall represent by F, is supposed

rational with respect to #. Let also the equation (1.), made rational and entire with
respect to & by reduction to the form

PP Hpa T 4p,=0 . . o o o o 0oL (2)
be represented by E=0.
Then observing that X does not become infinite when E=0, we have

S(Xdr=3(Fdz
= @[F]%E—} ()

On performing the operation ® in the second member, the function under the sign of
integration will be an exact differential relatively to a,, a,, ..,, and, being integrated, will
MDCCCLVIL. oG
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give the value sought. If the number of integrals under the sign = is specified, suppose
it », the function ¥ must be so chosen that the reduced equation E=0 may be of the
nth degree.

The algebraic sign of each of the integrals in ={Xdx will be the same as the sign of
the corresponding function F, which, as being rational, is not ambiguous.

17. Ezample 1.—The following theorem is given by a writer in the Cambridge Mathe-
matical Journal, vol. i. p. 268, as a generalization of a theorem of Mr. Fox TaLsor’s
relating to the arcs of the equilateral hyperbola. The equation of any hyperbola referred

24 2
to its asymptotes being xy_a i

» or for simplicity, ay=m’, we have, supposing ¢ the

angle between the asymptotes,
y
arc j’ &/ a4 —2m%x® cos § + m? do.

z‘l
Supposing then three values of 2 to be determined by the equation ‘
N #t—=2m*? cos 0+mi=va+m?, . . . . . . . . . . (L)

the sum of the corresponding arcs will be

3 m2 cos §

5 v+ 4const. . . . . . . . . . . . . . . (2)

To demonstrate this theorem, it must be observed that the equation (1.), reduced to a
rational and integral form, becomes

2 —(2m® cos’0 v’ )e—2m*v=0, . . . . . . . . . . (3)

which occupies the place of E=0, art. 16. By virtue of the same equation we have

4_ 093 ! y 2
Ej\/.z Qmﬁcos() b dx:Eyw;m I,

&€

Thus we have, 1st, to transform the expression

vz -+ m?

Ewgdx,..............(ll.)

the simultaneous values of # being determined by (8.); 2ndly, to integrate the result with
respect to the new variable v.

Applying the general theorem of transformation, art. 12, we have

2 2 2
st .o [m+m:| — (22v +2m?)dv
a? 2 —(2m?cosf+v¥)z—2m=» - T T T T (5.)
Here we must develope the function
v+ m? — (22v+ 2m?)dv
wQ X'Z’S—(ng COSG’-*—'ULZ)Z'—QmQ’U . . . . . . . . . . . (6.)

in ascending powers of @, and take therein the coefficient of % From this we must

. 1.
subtract the coefficient of —~ in the development of the same function in descending

powers of .
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Finally, we must integrate the result relatively to v.
Developing the two factors of (6.) by ordinary division in ascending powers of &, we
may express it in the form

m? v\ /%  v>—2m? cosf

‘Whence, on multiplication of the factors, we find for the coefficient of i—,

3 m?cosf
(5_%)3@..............(7.)
The coefficient of i in the descending development will evidently be 0. Integrating, we
ha ‘ 2
ve Go™S™0)4c o (8

for the value sought.
It must be observed that, in applying the theorem, the signs of the integrals under the
symbol 2, which would otherwise be ambiguous from the square root, are made deter-

minate by the equivalent rational expression (4.). Fach must be of the same sign as the

. . vz+m?
corresponding value of the function —z—-

18. In the example we have just considered, the equation of transformation connects
o with but a single new variable v. In the following examples, which are intended to
illustrate the doctrine of the comparison of the different orders of elliptic functions, two
new variables are introduced.

Example 2.—Required the finite value of the expression

zfmjj)jr_.m, R B
the simultaneous values of # being determined by the equation
NA=2)1=ca)=14vetwa® . . . . . . . . . L (2)
By virtue of this equation (1.) assumes the rational form
25‘1 +v.Zi wa?
Again, the equation (2.) becomes rational and integral when expressed in the form
(I4vrtwa’)f—(1—a*)(1—=c2*)=0, . . . . . . . . . (3)
and occupies the place of E=0 in the general theorem. Hence we have
2j'1+ dz = 9[ 1 Q] 2(1 +vx—l—§:fﬁ)(.z*_¢lv;|-x9dw)2 .
V& + wa 14+vz+wa? | (1 vz +wa?)?— (1 —27) (1 —Pa?)
Here the function Hadv +adw)

(1 +vz+wa?)?— (1 —a) (1 —c2?)

is to be developed in ascending powers of the simple factors of 14va4-wa>. Let a—£h
be one of those factors. Then it is evident that there cannot be a term of the form

% in the development of the function in ascending powers of £—%, inasmuch as that

562
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factor does not exist in the term (1—a?)(1—¢*2?). Again, there cannot be a term of
A . .
the form — in the development of the function in descending powers of 2. Hence the

result of the operation © is 0, and we have, finally,

dz
Efvi——————const @)

2% (1 —c%a?)

The above constitutes in reality what is usually termed the fundamental theorem for
the comparison of elliptic functions of the first order. The equation (3.), arranged
according to the powers of , gives

(w*— )+ 2vwa* 4 (v 4 2w+ ¢+ 1)w 4 20=0.
If we then represent the simultaneous values of # by z,, #,, #;, we have

— 20w
A o L

2 2
V24 2w+c*+ 1t
x1x2+x2x3+x3x1= we— 2
2v
B o= o —

whence, eliminating v and w, we find
(1= (1—a2)(l—a)=2—a—ai—aitcwiiadt. . . . . . . . (5)

Now this is the form to which the known relation connecting the amplitudes ¢, +J}, ¢ and
the modulus ¢ in the equation
HF(p)LF(§)LF ()=,

viz. the relation, cos e=cos @ cos 4 —sin @ sin \/ T—¢®sin’ o, is reduced, when we therein
make sin p=a,, sin ¢ =2a,, sin 6=a,, and rationalize the resulting equation. The signs
of the integrals will of course be determined by the signs of the function 1--ve-wa®.

To obtain a formula for the comparison of elliptic functions of the second order, we
must deduce a finite expression for

1 — 2,2
> 1 c.z’

subject to the relation (2.). We have then

1 —c%*? a?
j"\/ 2 da '—Ej‘l+m+wx2dw
—(o 1—c%? 2(1 4+ va + wa?) (xdv + 2%w)
T [1+va:+w.z:2 (1 +vx+wa?) —(1—a?) (1—c%?)

Here, as before, the effect of that part of the operation © which depends upon
14+ve—4wa? is 0, so that we have simply

1—c%%, _ (1—¢%%) x 2(adv +-2%w)
_YM z o= A’/'C*;- (1+vz+wa?) —(1—2%)(1—c%?’
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C1 denoting the coefficient of i in the development of the function in descending powers

of . Now developing the numerator and the denominator separately, we have
2(c2*—1)(a*dw—+adv) =202 dw+ 2% . .
A4vztwa®)’—(1—2)(1—c*2?) = (w’—)a* 4+ 2vwa®..
Dividing the first of these by the second, we have a quotient

2c%w ( 22 4c wv3w> +&e.

w?—c T \w?—c® (wr—c?)?

Integrating the coefficient of %, which is a complete differential relatively to » and w, we.

have
3 2
5'\/1 _c;’; = 2+constant N ()
The signs of the three mtegrals under the sign =, are of course determined by the signs
1—c%?
of the calculated values of R

We might in the same way deduce the known formulée for the comparison of elliptic.
functions of the third order. Or we might at once investigate a formula for the com-
parison of elliptic functions of every order. For the latter purpose we should have to
evaluate the expression

y (@ + ba?)dz

(1+n2?) v (1—2%)(1—c%?)

under which the three canonical forms of elliptic functions are comprehended, in sub-
jection to the condition (2.). By the general theorem of transformation this value is

o r a+ba? 2(1 +va + wa®) (@dv + 2%3w)
j (1+n.7f2 (1 +ve+wa?) | (1 +ve+wa?)2— (1 —a?)(1—c%?)’

which may be reduced at once to the form

Fa+ bx 2080 - 20%w / ;
§®L1+mejl+vw+ww“ == - 0

The rest of the solution involves no difficulty. We must develope the entire function

S 1 R .
following @ in ascending powers of x+—5~n;\/ —1 and x—ﬁ\/ — 1 successively, and

. 1 1 ; ,
take therein the coefficients of 1 and —.  From their sum we must

1
xz+ an & e

subtract the coefficient of i in the development of the same function in descending

powers of x, and integrate the result as a complete differential with respect to v and w. -
The above results are entirely founded upon the assumed theorem of transformation,

N (=)l —ca?)=1+var+wa’.

But any other transformation which would connect # with two new variables, through
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the medium of an equation of the third degree with reference to &, would lead to results
possessing the same degree of generality. Thus the equation

N (1= (1—=c*)=v+wa+ca?,

which connects # with v and w, and constitutes when freed from surds an equation of
the third degree with reference to #, might have been employed. I am not aware that
the above forms have been employed before. LEGENDRE, in deducing the properties of
Elliptic Functions from ABEL’S theorem, sets out from a different assumption, and as I
think a less simple one, leading however to equivalent results.

It is not my intention to enter here into the subject of the connexion of the different
solutions which may thus be obtained. The theory of that connexion can however pre-
sent no difficulties to those who are acquainted with the labours of Jacosi, RicueLoT
and others, upon the differential equations on the integration of which the doctrine of
the comparison of transcendents, as contemplated from another point of view, depends.

19. Before applying the general theorem of transformation to the investigation of
general formulw for the comparison of transcendents, I will say a few words upon ABEL’S
theorem, as well as upon the class of theorems to which it belongs.

ABEL’S theorem is virtually an expression for

fl@)dz
Ejv(x——a) 4/6(?)7

J(@) and ¢(2) being polynomials, the simultaneous values of & in the several integrals
being connected by the equation

Vo) = ),
o) =)

where y(#) is not restricted to being a polynomial, but is a rational function of z, in-
terms of the coefficients of which the value of the integral sum is to be determined,
ABEL expresses ¢(x) as the product of two polynomials ¢,(x), ¢,(#), a form which is

obviously given to it in order to meet the case in which a rational fraction occurs under
the radical sign, since we have

or

2 f (@) d (@)p, (@) dx
('Z' —a) V¢,(2)y(@) %('”)
Brocu and others, including, I beheve, ABEL himself, have considered very fully the more
general case in which the polynomial ¢(x) is raised to any fractional power whatever,:
and to this case may be reduced the still more general one in which a rational fraction
takes the place of the polynomial. The reduction is however obviously far more com-
plex than in the simpler case in which the index is 4. I intend here to discuss this
problem in a form sufficiently general to render all such reductions unnecessary.
20. ProsLEM.—Required a finite expression for the integral sum

Sfednde, . . . .. . . .. .. (1)
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¢ and 4 being any rational functions of &, the simultaneous values of # in the different
integrals being determined by the equation

m

MEE, e e e e e (2
x, also denoting any rational function of # of the form

ay+ax + a2’ +a o™
by + byx +b2®.. +b

Our object is to determine (1.) as a function of @, @,, .. @,, b,, b,,..0,, which are arbi-
trary in value, whereas the coefficients in ¢ and +J are definite in value and are usually
numerical.

Representing ¢, 4/ and ¥ in the forms

u

P _S

Py ¢, S, &, u, and v being polynomials in @, the transforming equation (2.) assumes the

form
(7)" =

St trr=0. . . . ... (4.)

With this condition connecting the values of 2 in the several integrals with a,, a,,..b,, b,,
&ec., we have to seek the value of the expression

s|3
SN

‘Whence

S\EE .
q’D

For to this form, rational with respect to , the expression (1.) is reducible by virtue of
the above relations.

. "pu . .
Consider then = (ﬁdx subject to (4.). To apply to thisthe general theorem, we must

write therein
F:M, E=gmr—tmur.
qv
We thus find
pu pu e g pu | smon By — gy 10u
2q—vdm=9[q—v:|810g (sm"—t"u")=nO [9—”1 e (BY)

SMY e fOY

We cannot in its present form integrate the second member, as the interpretation of ©
depends in part upon v, which contains some of the variables to which the integration
has reference. As however the function which has to be developed in the performance
of the operation © is a rational fraction relatively to u, viz.

pu s 18— MU du 6
® T R (N

we can resolve it into partial fractions, and this resolution will, in virtue of the properties
of O, enable us to effect the integration required.
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The partial fraction which has v for its demominator will be % %’f Separating this,
the entire fraction (6.) will assume the form

P %u | p s 18— smupn 2
qv ' yq 1Y — ™" ’

Thus (5.) becomes
P s™" 18y — smuv™ 2w
O s e (1)

P, P
Equx_.neq P

© deriving its interpretation from ¢ and w.
The first term in the second member, inasmuch as we may give to it the form

olw)

vanishes by virtue of (5.), art. 11. The second term may be reduced to the form

Mg — 180y ___ oMy ynylt—2,
o | £ [Tt L (8)
q

Myt — sy

In proof of this, I observe that the function to which © is applied cannot have any of the
simple factors of » in its denominator. No such factor is involved in ¢. For by suppo-
sition all the coefficients in ¢ are definite, while those in v are arbitrary. Neither, again,
can any of those simple factors be involved in ¢™u"—s™v", for if so it will be involved in
t™y", and therefore either in ¢ or #. But it is not involved in ¢, as the constants in ¢ are

definite ; and it is not involved in #, for if it were :)—t would not be in its lowest terms.

The expression (8.) may be written in the form

<£>m vy —udv

t 2 P

ne| &N =nele) e
(5)-()

on replacing l_; ; and g by ¢, ¢ and .

Hence

m mg,
Spy du=n0[e) %
"Therefore

)
Sfodnda "’X N D)

The symbols © and { in the second member are now independent and may be trans-
posed. We thus have

Sfog” dx_ne[go]wy K . (10)

an expression of remarkable simplicit .

21. In applying this theorem we = ust effect the integration in the second member,
regarding x, as the only variable, inas1 uch as the variables a,, b,, &c. enter into the con-
stitution of x, but not into that of - . other rational fractions ¢ and 4. When the
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integration is effected we must write for ¢, +, and y the several rational fractions for
which they stand and then perform the operation ©, as we are directed to do by the
definition of that symbol.

On actual integration we have from (10.),

it n S S 2 m n
2‘5'¢>¢ndx= e[¢]¢n2(cos %—:z—l—\/—l sin %;_7‘) 10g{x— (cos _2?',_'_\/__1 sin—%z)¢n}+ne[¢]¢n0, (11.)
the summation in the second member extending from »=0 to r==n—1. The last term

in that member is equivalent to an arbitrary constant. For ¢ and /" do not contain the
variables ¢,, 8,, &c., which are only found in y. Hence the coefficients of terms in the

developments of the function @J” will be determinate constants, and n0[¢]4" C, on
account of the arbitrary factor C, will be itself an arbitrary constant.
22. We are thus led to the following theorem :—

TaroreEM.—The value of the expression Ejb«ﬁdx, where ¢ and ) are any rational
Junctions of x, and the simultaneous values of x in the several integrals under the sign = are

determined by the algebraic equation y =y in which is a rational function of x, will be
expressed by the formula

2_§'¢¢%dx= e[go]ﬁz (cos ggj—l—\/:-—l sin -2-22) log{x-— (cos gg—l-\/:—i sin g?) ¢%}+C,

the summation in the second member extending from #=0 to r=n—1.
23. In the particular case in which m=1, n=2, we have

- — x= T
Slon/ dz=0[o /¢ logx———--—+ Vi - (2
Let us apply this theorem to the problem of Art. 17. We have

1 A
o= J=a'—2m’x cos 0+mt, y=vr+m?;

25'&/.%4:— QmZQcos 0+ m? dr

va +m2— & 2 —2m%a2 cos § +m?*
ve+m+ v 2h—2m?z® cos § +m*

1
=0 [F:]\/ &t —2m*? cos -4+mtlog
First, then, we must develope the function in the second member in ascending powers

of #, and seek the coefficient of %9 Now

N M —=2mP%* cos 0+a*=m?—a* cos 0+ &c.

Substituting, the function becomes

2

m
(?——cos 0. .>1og s
MDCCCLVII. , 5H

vz +2%cosb..

m? vz —a2cosi..
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But log (ve+42°cosd..)= 1oga:+logfu+x cos #

+ &ec.

ve —a? cos f

log (2m*+vz—a®cos 4 ..)=log 2m* +——F—— + &ec.
Substituting, we have

2
(%——cos 4. ) {log x-+log v—Ilog 2m* 4 (9_@_0 Qimg)x . .},

wherein the coefficient of i in the product is

m2cosf v

— .8y

v 2
In the second place, developing the function in descending powers of &, we have

N 7' —2ma® cos §+mi=a*—m? cos I, &c.,
which on substitution gives

m coso — 22 +v2 +m?(1 +cos b)
(1_ )log 22 +va +m?(1—cos )

=(1-"5 Y1og (—14+%
=<1—m2;gso ) _%,11 ')a

wherein the coefficient of i is —2v. Hence, changing its sign and adding the result to
(13.), we have

vV 2t — 2m?%? cos § + mt 3 m? cos 0

+C,

which agrees with (8.), art. 17.

1t is, however, very much easier in the above problem, and perhaps in most others, to
apply at once the fundamental theorem of transformation, as already exemplified in its
solution.

24. ABEL’s theorem is of course included in that of Art. 23. To deduce it, we must
observe that its object is to determine the value of the expression

x)dx
zg(x_a)ff/;l - (@)

the simultaneous values of # being connected by the following equation,—

Po(2) __totax..+a 2™
?1(®) cotem. +eat

To compare with the general theorem we must therefore write (1.) in the form

Po(@)
Ey(w eV a@?

Hence we must make in (1.),
S@) 4‘__%('”) _Gtaz..

¢=(.z-—a)¢2(x)’ Ttaz..
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We thus find S
G+az.. Po(2)
(@)dw _e[ fl@) %('77)1 Co+ 0% .. @1('1'). ‘
)(ﬂ"—“) vV ¢,()pa(x) (#—a)pq(z) 1@ °aytaw.. 420!
Coteaz. ¢, (2)

Here the function to be developed is
f(@) o (Go+az.) Ve, @) — (e +e@..) ‘/a;(.;)’
(z—a) v/ ¢,(x)py(z) (@o+a12..) ¥/ §1(%) + (cot+ e ) ¥V Po()
the ascending developments having reference to #—a, and to the different simple factors,

&=y, £—h,.. of ¢,(x). The coefficient of ;1—{1 in the first development is evidently

fla) 1o (ay+a,a..) \/@—(co+cla..) V@.
V'¢,(a)p,(a) J (@+aa.)Vea +(co+ca.) Ve, a)

The coeflicients of w—i—-, ;l—h in the latter developments are 0. Hence we have
l —

s‘ faz)de — fla) log(ao'*'ala 2 4/% (@) —(co+c1a..) ¥V ¢,5(a)
(x—a ‘/¢1('Z. @2(‘”) V@l(a) @Q(a) (ao+a1 ) v¢l(a) + (C()+C]a ) v@g( )
A=) 1 (ap+aw..) V,(x) —(co+ey..) ‘/‘Pe(x)

T T Ve @ne 8 () Vo ot o) Vo)
which is ABEL’s theorem. There is, however, nothing gained by the peculiar form in
which it supposes the integral to be expressed. The resolution of the polynomial under
the radical into two factors ¢,(x), ,(#) is only a substitute, and an inconvenient one, for
the more general hypothesis of the theorem of art. 22, which permits the function under
the radical sign to be any rational fraction.

25. The theorem of art. 22 is, I believe, more general than any which have been

investigated with relation to the same well-marked class of transcendents. BrocH,
JURGENSEN, and MinNpING have given formula directly applicable to the case in which «J
is a polynomial *. Their results agree in substance with the above, under the particular
restriction supposed, but they are far more complicated in expression. The introduction
of the symbol ©, definite in meaning and indicating the performance of operations which
are always intelligible and always possible, greatly simplifies the expression of general
theorems.
. 26. The most general form of the problem contemplated by ABEL in his theory of the
comparison of transcendents may be thus expressed. Required a finite expression for
S\f(x, y)dx, f{»,y) denoting a rational function of # and , the latter of which ‘quantities
is itself an irrational function of # given by an algebraic equation of the form

2y 0y ey Ap=0, . . . . o o o0 (1)
wherein p,, p,,..p, are rational and integral functions of #, the simultaneous values of &
in the different integrals being determined by an equation of the form

Y=,

% CRrELLE’S Journal, vol. xxiii.

5u2
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wherein 7 is a rational function of #, and of any new variables @,, @,,..a, in terms of which
the value 3|f{#,y)dx is to be found*. JURGENSEN has remarked that this problem may
be reduced to that of the determination of the value of the expression

3§ flo)p(a, y)da,
J(x) being a rational function of # and ¢(x, ) a rational and integral function of # and y ;
and under this form, adding also the restriction that p, the coefficient of the highest
power of # in (1.) shall be unity, he has solved the problem. MinNpiNe has investigated
the solutionwhen the above restriction is not imposed, but his analysis is in reality
founded upon a transformation in which p,y takes the place of .

We can, both with increased generality and with that gain of simplicity which results
from the employment of the symbol ©, solve the same problem by the method of this
section. But as the comparison of the algebraical transcendents is not the most important
object of this paper, I do not propose to enter here upon the investigation in its most
general form, but shall demonstrate a theorem which, while it is sufficiently general for
all.practical ends, will at the same time serve to throw light upon a peculiarity in the
theorem of art. 22 already demonstrated. '

217. ProBrEM.—Required, in finite terms, the value of the integral expression

Sfe@yde, .. . .o (L)
o(x) denoting a rational function of x, and y an irrational function of x determined by

an equation of the mth degree,

Py 0y oy =0, . . . . . oo o (2)
where p,..pn are rotional and integral functions of x. We shall suppose the different
simultaneous values of x under the sign 2 determined by an equation

N €
x being a rational function of x of the form % s in which u and v are polynomials. The

value of the integral expression (1.) is to be found in terms of the coefficients of those
polynomials. :

The equation (3.), cleared of the radicals contained in g, and arranged with respect to
the powers of yx, will be

PoX " +_pm=07
or writing for y its value %, and clearing of fractions,

P pw ’lv..+pmvm=0. e e e e e e (4)

This equation, on substituting for » and v their values as polynomials, is rational and
integral with respect to #, and occupies the place of the equation E=0 in the general
theorem of transformation. 'We shall suppose it of the nth degree. It may of course

* ABEL’s Works, vol. ii. p. 66. + CrErie’s Journal, vol. xxiii.
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be exhibited in the form

polu—vy, Y(w—vy,). . (W—2y,)=0, . . . . . . . . . . . (8)
Y1, Yo--Y,, Deing the different values of y, as determined by giving different signs to the
radicals in its expression. Hence we have

Sfp(@)ydo=3fo(x), de={o [ p(2); |3 log pou—uvy,)(u—1y.). . (u—1y,)
=fo[o(e); |3 =y

the summation in the second member extending from r=1 to r=m.
Here, transposing the symbol 2, the function upon which the operation ©, whose

(6.

interpretation is derived from qb(x)%, is to be performed, is
w Su—1/,8v
@5 w=yo
which may be resolved into
du—y,dv

o)y e+ H du—y 20).

Hence
2S¢(x)ydx=259¢(x)g,%—I—EX@%’Q(M—%B@. M

We are especially to remark, that while = in the first member has reference to the =
different values of & furnished by the equation (3.) or (4.), = in the second member has
reference to the different values of y furnished by the equation (2.), its numerical range

being from r=1 to r=m.
Su—y,dv
u—y,0

Now considering the term s{ee(2)y,

all that part of the operation © which depends upon v produces no effect. For none of
the factors of v can enter in any way into 7,, since those factors contain the variables
@y, @,. . @,, from which g, is wholly free. Again, they cannot enter into the denominator

u—y,v, for then they would enter into », and the fraction % would not be in its lowest

terms. Hence the first term in the second member of (7) becomes

sfolo(e) Yty
We can now transpose the symbols { and © and integrate. The result is
o[¢(z)]=y, log(u—yv). . . . . . . ... (8)
The last term of (7.) will, on account of the interpretation of ©, be properly written in
the form
26| o(a); | Gu—y.),

which may be resolved into

=0 [:gb(x)-lz;] du—=0 [(p(w)%] 4,00,
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The first term vanishes by Art. 11. The second may be reduced as follows. We have
1 1 1
—36 [ §D(x);]‘%3@= —06 [@(x);] Sy,00=0 [¢(x); :lg(l) .

Now e[¢(x)%:’%80+9[¢(x)%:l%Bv:e[qb(x)%%‘)]B@—l—e[ﬂx):,%%év.. .o (9)

This is evident if we collect the different parts of the interpretation of © from the terms
in each member, observing that in all cases it is upon the same function that © operates.
Now the first term in the second member vanishes by Art. 11. Hence

Vipay, [ ]&3_”_ [ &]b‘_v,
e[m)v]po w=0| o(a) [BT—0| p(a) |2
Attaching now the symbol of integration to the second member, and integrating, since
Sand O are now transposable, we have

e[gb(x)]ﬁ-; logv—6 [¢(x)§-ﬂ log v.

Writing in the first term of this expression — 3y, for g—‘- and adding the result to (8.), we
0

have

Olp(2)](Zy,log (u—yw)— 3y, log v} —0)| (@) [Log,

T o[e()]=2y, log <%— %) —0 [¢(x) %1) :l log v.

Hence replacing % by x and adding the constant of integration, we have

Sfo(a)yde=0[¢(z)]Sy, log (X—%)-—G[@(x)%l):l logv4+C, . . . (10)
the expression required. It will be observed that as ¢(z) and% are always rational
0

functions, the operation. © may always be performed on each term of the second member.

As the summation 2, log (x —,) can only be effected by connecting the several terms
included under = by the sign of addition, it will be most convenient to express the
solution in the following form,

Sfp(2yda=3=r6[e(x)]y, log (X——yr)—eligb(x)%:l logo+C. . . . (1)
28. If p,=0, we have
Slo(xyde=3=r¢ [p(2)ly, log (x—y,)+C. . . . . . . . . . (12)
This includes as a particular case the theorem of Art. 22. For if y:xﬁ, we have
yr—m=0,

of which any root g, will be given by the formula
U= (cos ‘_1%7’_ 44/ —1sin ?_:’;) NS
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Hence on substitution we have, since the number of values of y is =,

m - 2r — . 2\ ™ or | . 2\ B
Slo(x )" do=2;=10[ ()] (cos —nf.—l—\/-—l sin —n—> Jn log {X"‘ <cos - 44/ =T sin ——n—> J },
which agrees with the result in question.

We now see why it is that, although in the investigation of the latter formula we
had to take distinct account of the terms % and v in the fraction y; in the final result
they are recombined, and only present themselves implicitly as component parts of .
It is due to the fact that the equation determining the irrational factor of the original
integral wants a second term, ¢. e. that p,=0.

If p,=1, the term—© [@(x)ﬁ—’] log vin (11.) becomes — ©[p(x)]p, log v, or —2O[p(x)]y, log v,
0

whence the theorem assumes the following form,
o(a)yde="=270[¢(x)]y, {log (x —7.)+ log v} ===10[¢(x)]y, log (u—yv).

We may remark in concluding this section, that all general theorems like the above
for the comparison of algebraical transcendents are difficult of application, from the

necessity which they impose of developing logarithmic and irrational functions. This
~ difficulty we avoid by employing directly the theorem of transformation exemplified in
the earlier problems of this section. The application of that theorem requires only the
development of rational fractions, and this can always be effected by the operations of
multiplication and division. When this form of procedure is adopted there remains,
however, an integration to be performed. Circumstances must decide which of these
methods is preferable, but generally I conceive it will be the latter one. I will only
add, that the interest attaching to the entire subject of the comparison of algebraical
transcendents appears to me to be chiefly of a speculative character. 1t is to be valued "
rather as affording evidence of the powers, and at the same time of the limitations of
analysis, than as offering any prospect of increased command over the problems of
physical science. Such at least seems to be the tenor of present indications.

Application of the General Theorem of Transformation to the reduction of Functional
Transcendents.

29. Let us first apply the general theorem to the reduction of the expression ={pf{)dz,
where ¢ and ) are any rational functions of &, and f a general functional symbol, the
simultaneous values of  in the several integrals being determined by an equation,

=, .. . . . o o oo (1Y)
-in which v is a new variable.
‘We have

Slef (Wyde=3(fv)pdae=(3fw)pda. . . . . . . . (2)

We must now seek the value of the expression f{v)pdr, subject to the condition (1.),
and then integrate with respect to v.
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. . P
Now 4 as a rational function of # may be represented under the form o where

P and Q are polynomials in & not involving ». The equation of transformation then

becomes
P

a:’v,
and in its rational and integral form Qv—P=0.
Hence by the general theorem of transformation,

3f(v)pdw=0[ f(1)p] log (Qv—P)=0[ 0)p] gy

Now the factor f{v), inasmuch as it does not contain #, in nowise affects the interpre-
tation of ©. IHence it may be removed from within the brackets and the equation

written in the form

()l =f)0[¢) grop=F1)0L6] ;g

on replacing % by .

Hence, replacing the first member by the expression for which it is an equivalent, and
attaching the sign of integration,

sfofl)de=[fwelel g - - - - - - . . (3)
To this result we may also give the form :
Sefpie=orel (2%, .. 4)

as the symbol © and the function ¢ are both independent of the variable v. And this
would in fact be the best form if we could effect generally the integration in the second
member. For the applications to which we shall proceed (3.), is, however, the form to
be preferred. ,

We may express the results which have been arrived at in the following general
theorem.

TuroREM.—If ¢ and < are rational functions of x, and if the simulteneous values of
x in the integrals included in the expression 3§ gf()dx are roots of an equation

Y=0,

v being a variable quantity, then

Sfof()e={ fr)ele]; -

30. Apparently this is the most general theorem which exists with relation to that
class of transcendents in which a perfectly arbitrary symbol of functionality occurs under
the sign of integration. If we specify the form of f; so as to meet the case of the
particular transcendents discussed in the previous sections of this paper, we shall obtain
results accordant with, but less general than, those which have been there obtained.
But the most important feature of the theorem is, that, without restricting the generality
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of the functional symbol f, we may so determine the form of +/ as to cause the several
integrals included under the sign 2 in the first member to close up, if the expression is
permitted, into a single definite integral whose actual value will then be given by that
of a far more simple integral in the second member.

Let the limits of v in the second member be p and ¢, and let the transforming equation

Y=o |

give p,, Py..Posy for the values of & when v=p, and ¢,, ¢,..¢,4, for its corresponding,
values when v=¢. Then we have '

v

(ofnar+( ofnar.+ (" efnyie = vl 2y . . . ()

Now let us give to 4 the form

a, a, a,

— — — )

r—N w—)\ao ) x—A,

where A,, Ay, .2, are real, and a,, @,..a, real and positive. The transforming equation
is then

41 a4 . a ..
iy wa—y m_}\n_v,. N (B

e —

whence representing still the first member by +,

b a, a . a,
%_1+('”—)‘1)Q+(x—7\2)2 T

@—r

and as this expression is always positive, it follows,—1st, that «J regarded as a function
of 2 is never a maximum or minimum ; 2ndly, that whenever <} varies continuously while
x increases, it varies by way of increase. '

From these properties, and from the form of the equation (6.), it readily follows that
if A, A,, .7, are arranged in the order of increasing magnitude, then whatever real value
» may have, the roots of (6.) will be real and will be disposed in the following manner,
viz. one root less than A,, one root between A, and 2,.., one between 2,_, and A,, and
ﬁnallyi one between A, and co. To prove this in detail, let & vary from —co to 2,, then
<, as is evident from its form, varies from —cc to oo, and it varies continuously by way
of increase so as never to resume a former value. Once therefore in its course it will
be equal to v. Wherefore one root of (6.) lies between —co and A,. Supposing z to
continue to increase, the value of + suddenly changes when & passes over the value ‘7\,
from oo to —oo, and as & varies from A, to A, + again varies continuously, and by way
of increase from — oo to oo, and therefore again becomes equal to v once in its course;
wherefore a value of 2 lies between A, and A,. In like manner there is a value of »
between 2, and A;.. A,_, and A,. Finally, as & varies from A, to o, /) once more passes
over the value v. 'Whence the proposition is manifest. ,

The reality of all the roots of (6.) may also be readily shown in the following manner.
Let z=p+4¢+/—1. Then substituting in (6.), and reducing that equation to the form

A+4+B/—1=v,

MDCCCLVIIL. 51
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which entails as a necessary consequence A==v, B=0, we find as the form of the equa-
tion B=0,

a a n
g{1+(p_A]l)2+q2+(p_AQ§2+q2 .. +(p—An)2+qQ}=0'

Now as the function within the brackets is essentially positive, the above equation can
only be satisfied by making ¢=0. But this indicates that all the roots are real.

. Resuming (9.), it is evident from what precedes, that if the lower limits of integration
P1> P3 - Posrs cOrresponding to v=p, are arranged in the ascending order of magnitude,
- the upper limits ¢,, ¢, .. ¢,+, Will also be ranged in the same order. Moreover p, and ¢,
will both be less than A,; p, and ¢, will lie between 4, and 2,; finally, p,,, and ¢,,, will
lie between A, and . Hence, then, the elements in the different integrals in the first
member of (5.) will be all different, the superior limit of each integral being less than
the inferior limit of the integral which follows it.

31. Let us now examine the case in which the integration relative to v in the second
member of (5.) is from — oo to oo.

Let p=— oo, and g= oo, we then have

]71':7—00 s Pa=A,  Ps=Ay. Prii=N,,

= My =k G=A 0 =Ny, fpp =0
Thus ¢,=pa §a=pPs .. §a=Pn4+1, Or the upper limit of each integral coincides with the
lower limit of the integral which follows it.

It is more strict, however, to regard p and ¢ as fending to the respective limits — o
and co. The first inferior limit, p,, then tends to — oo, and the last superior limit,
@n+1> to oo, while the superior limit of each integral but the last tends upward to the
same limiting value to which the inferior limit of the integral following tends down-
ward. The different integrals close up into a single definite integral taken between the
limits —co and oo. Thus we have '

{Coow=(" ooy )
The reasoning is evidently independent of the nature of the function symbolized by f.

That function may either be continuous or discontinuous. We thus arrive at the follow-
ing theorem, in the expression of which we shall restore to +J its complete value, and
shall replace the rational function ¢ by ¢(z), and the symbol 8, which is no longer neces-
sary for distinction, by d.

32. TurorEM.—If ¢(x) denote a rational function of x, and if £ be a general functional
symbol, then

{7 st (s )

v—a+ =+ -

Z—=A =2y p—A,

provided that a,, a,, ..a, are real and positive, and A, A, .. A, real.
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This is the general theorem of definite integration to which reference has been made.
The remainder of this paper will be devoted to its illustration.

The theorem is independent, as has been said, of the nature of the functional inter-
[/4
limiting values A, A, .. A,, does not fail, but carries with it a correction for the discon-
tinuity thence arising. We cannot otherwise attach a meaning to the expression

pretation of f, and, even when the factor f' <¢v—- —_ ) becomes infinite for the
. X Z=—An

b
j‘ J(x)dz, when for a value #=2, included within the limits of integration, f{z) becomes

infinite, than by considering it as the limit to which the sum of the integrals

(T row|” faa

tend as ¢ and ¢' tend to 0. According to the nature of the function f{x) and the modes
in which ¢ and ¢ tend to the limit 0, the integral may become, as Caucny has observed,
finite or infinite, determinate or indeterminate. When ¢'=e¢, so that the approach on
either side to the limiting value A is made in the same manner, ¢. ¢. by equivalent infini-
tesimal variations of #, the value of the integral obtained will be that which Caucny
terms its principal value. The equation (1.) will thus give the principal value of the
integral in its first member, if we suppose v to approach by the same kind of variations
to the limits —oo and oo ; in other words, if, representing the function under the sign of

integration in the second member by F(v), we regard jw F(v)dv as the limit of the value

ofjw F(v)dv, @ becoming indefinitely great. For suppose # to be approaching the par-

ticular limit 2,. 'The nearer its approach the more nearly (vide¢ 6, art. 80) is the follow-
ing equation realized, viz.—
Z—A,

=,
whence the more nearly have we :
r=»N "'ilv_l B
and therefore, if v tend towards co and —co by equivalent variations, so also will # by
equivalent variations approach from above and from below the limit 2,.

Again, the larger # becomes the more nearly do & and v approach a ratio of equality,
and therefore the mode of approach of 2 in the first member to the limits —oo and o
determines identically the mode of approach of v to —oo and co. Thus we may finally
give to the theorem the following rigorous statement, viz.— .

The two members of the equation

§- et (o= 25 =525 = Lot~z

V—2 +

z—N""  @—A,
approach a ratio of equality as a approaches to infinity, provided that if
— al — n
f<x Pyl a:—)»,,)
512
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become infinite for the critical values A, Ay..M,, we suppose X to approach each critical
value by equivalent infinitesimal variations.

The most important, perhaps the only important, cases are those in which f{(v) vanishes
when v is infinite.

33. I shall begin with noticing some particular deductions from the theorem, among
which will be included certain known formulee of analysis. I shall show that it enables
us to deduce from any known definite integral the values of an infinite number of other
definite integrals of progressively increasing complexity. I shall show that when the
arbitrary function under the sign of integration is regarded as discontinuous; the first
member of the equation becomes resolved into a number of definite integrals of con-
tinuous functions, and that we thus arrive at the same theorem for the comparison of
functional transcendents, (5.), art. 30, from which the above theorem was itself derived.
Finally, I shall apply the theorem to the extension of the theory of definite multiple
integrals.

Special deductions may be obtained by limiting either,—1st, the form of the rational
function ¢(x) ; or 2ndly, the interpretation of the functional sign f'; or 3rdly, the number
and value of the constants in the function under the sign f.

1st. Let ¢(#)=1. Then in the second member of (1.), art. 32,

dv dv
ole(=)] a, @ C:; a a,
v-——x—l—x__}\l-- Z— Ay v_$+.z—)\l..+x—}\n
—C dv
s W )
Z2—A; X—2A,
=dv.

Hence

j‘mf<x—;i—‘i;--—xif;”)dwzj‘_:f(v)dv.. e (2)

This was the theorem, or rather the most important case of the theorem referred to
in Art. 1, as published in the ¢ Cambridge and Dublin Mathematical J ournal,’ No. XIX.
The following are special applications of it, chiefly selected from the paper in question.

Since we have

{(re=a={ foyw, . .. . ... @)
and

= (x—§)2+2a,
we shall have 3} . _

y_ f<x2+%g)dx=f~wﬂvz+2a)dv. C W)

Hence

o x2+93) © X
j'e de=\| X dv=a . . . . . . (5)

0
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In like manner

] 2 ]
j\ cos (w“’+ Z—Q) dx:j‘ cos (v*+2a)dv
=cos Zaj‘ cos(v?)dv—sin 2ay sin(e)do  p - - - - (6)
§
= (g) (cos 2a—sin 2a)
and similarly, -
®© ) 3
y sin (x’+:7g dx:(%) (cos2a+sin2a), . . . . . . (7)
which are known relations. We may by the same method deduce the relations
® —{ a2 @ cos 2 . ‘ :
j:“dxe () ocos{ <x2+g—g)s1n 0}:%’*&‘2““9008 (2a sin (J+g), .. (8)
. ® - a2 ‘f €os 2 . . .
j‘_wdxe (#5 é’sin{(.:r,=2—1—;f—_2)s1n 0}=7r*e‘2"°°”sm (Za sin 0—|—%>, .o (9)

originally given by Caucay. All the above definite integrals are reduced by the theorem
to immediate dependence on the fundamental theorem
w© _Mzd -
Jraa=;
Again, let us consider the definite integral

o«

_ dz.an—*
. ‘ u= o (@a+bz+ca®™
Making a*=2, we have

’I,(/=2y ———:df——a—;,
° <b+cz2+~z§>

_ © dz ’ _j‘m d’l)
'“{b+6<2‘2+£§)}n —°°{b+c(vg+2\/%>}n by (4)

_ ® dv

~J_w(b+2 Vacte?)

—9 ® dv

= f (b+2 Vac+ )"

Now from the known theorem

*dt.t=! _T(@T(r—a)
o A+ T 7

in which 7> a, we readily deduce

«m.+l m+1
- (2T
dv.om 1 P(n 2 > ( 2 )

m+1 m+1’ 9

o+t g T'(n)

(10.)
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whence, reducing the above expression for », we find

"” dy.zn—% 1 THT(n—1) "
o (@+ba+ca?)r c‘*(b+‘74/ac)"* T'(n) 5o . ... (A1)

. . 1 .
and hence on changing # into —, we find

©  dy.an—3 I'$HT(n—1)

o (@+bz+ca®)"™ I‘(n)a2(b+2 Vacy=3" =TT (12.)
The two last theorems were discovered independently and about the same time by
Mz. CavLEy, Professor THoMsoN * and ScHLOMILCHY. It is to be noted that @, b, and ¢
must be positive.

The above examples have been selected in the first instance because they relate to
known results. But there is not one of the results arrived at which may not be gene-
ralized to an indefinite degree.

Thus, since we have

f_:dve-””%r(}b} s
fwdxe—(w—;%)"=%r‘<%).. e (14

) ) 2
f dpee=(#+5) == g,

we have
If n=2, this gives

whence
y (B dp=ate, . . L . ... (15)
agreeing with (5.). But let n=4, and we find
j’ T (e ) de=200)e, . . . . . . . (16)

and so on indefinitely without even proceeding to employ the more general forms of (2.).
34. Let us examine the definite integral

u:jjﬂx”‘f(x—%)dx. N € V|

By the general theorem (1.) we have

u= j‘ @) OL] —

it

—‘f dfiCy gy - - - - - (18)

For, 2** not being fractional, the interpretation of © is reduced simply to —C,. TItis

2n+1
obviously desirable to express the term C. z

15— in a series consisting of powers of v.
&
Now ’

x.2n+ 1 .’li’2"+ 1 m2n+2

22—vw—a x?nﬂ{x%—a_l—(x?—a)g.{-(wg—a)3+&c} —a'H’(x2 )2+v( )3+&C - (19

* Cambridge and Dublin Mathematical Journal, vol. ii. ' 1 ORELLE, vol. xxxil.
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We are permitted to give this form to the expression before developing in descending
powers of x, because, on thus developing the several'terms in the second member, no
higher power of & will present itself than would be obtained by developing the first
member in descending powers of .

The general term of (19.) is

vi.xm““

If ¢ be odd, there will be no terms of the form % in the development of this function

in descending powers of #. Let ¢ be even and be expressed by 2m. Then we have to
develope in descending powers of # a series of functions of the form

vaz.2¢z+2m +1

The coefficient of L in the development of this expression is easily found to be
&

2m+1)(2m+2)..(n+m)

N—1Mm,2m
1.2..(n—m) @ T
Therefore ,
amtt (2m4+1)(2m4-2)..(ntm)
C%x“’—v.z’—a_z 1.2..(n—m) A

the summation extending from m=0 to m=n. Hence

o a men 2 1)(2m—+2).. em om ‘
(7 amp (=7 ) do=zamy OGRS o (7 difle). L (20)

In the particular case in which the function denoted by fis even, we have, on replacing
Slz) by o(a7),
- 2 nen (@M (@M +2).(adm) O
y_wxz”gb{ <x—g> }dx:Emzo( = 1)'(2‘-(n__)m)(n ™) ﬁ dvv*p(v?). . (21.)

This, when ¢=1, is CAvcHY’s theorem referred to in Art. 1. Some valuable illustrations
of it will be found in the Corollaries to the memoir of which it forms the subject.

We may employ (20.) or (21.) to generalize the results given in (11.) and (12.). We
may thus finitely determine the values of the integrals

© dr.anti-% ©  dxxn—i-3
o ([@+bz+ca®™ ), (a+ bz ca®)¥

¢ being an integer. For the former integral we shall have the expression

=i 2m+1.2m+2..04+m a e 1 V=g 5 0
m=0 1.2..(i—m) X 5irT 2iEl X () N ¢ )

c =

b+2 '&/a_c)"~_2—c 2

For the latter integral we shall only have to change in the above, ¢ into ¢ and ¢ into a.

The results in (11.) and (12.), and the more general conclusions just obtained, are of
importance in some of the more difficult problems connected with the mathematical
theory of electricity. It is probable that a result equivalent to (22.) may be obtained
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by some formule of Mr. CAYLEY'S connected with the reduction of the integrals which
occur in certain problems of this class. I have not, however, attempted a verifi-
cation. 7

34. Although the list which I have given of results obtainable by other methods
might be increased, it is still only in comparatively rare instances that the means of inde-
pendent verification present themselves. We might by transformations such as CAvcHy
has employed, verify the theorem

dz cosm (a: —2)

&

1+ (:é—f)z

—co X
but it would not be easy by any such process to verify the theorem
) dmcos{m(x— H_,, D )}
z—2A Zp— A,

. WO o

s M ( z—A, .z'—An)
a, and @, &c. being any positive quantities, and A,, A,, &c. any real quantities whatever.
I shall not, however, dwell any longer upon special results, but shall briefly state some of

the general consequences which flow from the application of the primary theorem (1.).
1st. The evaluation of any definite integral

® a a,
j_f(x)f(x—-—;_—};; . -—x_}m) dw,
in which ¢(x) is a rational and integral function of x, is reducible to that of the definite
integral ‘

-m

=% 5

y_w¢(v)ﬂv)dv, B ¢
in which Y(v) is @ rational and integral function of an order not higher than the order
of o(x).
For, by the general theorem,
* " _ a, _ ay o a, _ 0 1
y~wdx¢(&)f(x m—}‘l ‘Z'_}‘E Z‘—Kn) —S de(v)9[¢(x)] v—2 + a, . Qy
—w '7."‘—"1 B—Ay

Qn
r—2; x—X,

0

=S°° dnf()0 ——2D

since ¢(x) is integral. If we develope the fractions .Z‘ZIA , x_“f}q, &c. in descending
powers of 2, we shall have l
' #(2) p(z)
a4 @ Sa, Zal,
= 2= .‘.—'a'—An‘ L A
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Suppose m to be the highest index of # in ¢(«), then the development of the right-
hand member, in descending powers of & by division, will assume the following form,—

Boxm—l+lem—2+B2xm~3' M -l_:Bmx“l +Bm+ ‘617_2 . ;+&C.,

B, not containing v, B, containing the first power of », B, the first and second power,
&c. Hence B,, the coefficient of #~!, will involve powers of v up to the mth. Let this
function be represented by +(v), and we have

f olxgo(x)f( _-.__1..__%L.>—S ¢(@)f(v)dv @)

J(v)being of the same order with respect to v as ¢(x) with respect to .
The following are particular examples :—

ﬁdx'xf(?“wik;-— f'_A)—f oo . . e (3)

0

dx.x‘j”f(x—;g‘fl-- xf‘h)=5_m(v2+a,+a2..+a,,)f(v)dv N (D)

dxwﬁ”(m—;_—a_‘—): _xi”;\,) =5‘~w{®3+2(a1..‘+an)v+al7\1..+an7\,,}f(@)dv. .. ()
2ﬁdly. The evaluation of the definite integral
Nt . a n
{7 ap@)f (=325 —3255):
where ¢(x) s a rational fraction, is reducible to that of the definite integral

5_:01@(@)]“(@),. R ()

where Y(v)is a rational fraction of the same order as ¢(x).

By a rational fraction of the same order, I mean one whose numerator is of the
same degree, and whose denominator involves the same number of simple factors
elevated to the same powers, the only difference arising from the constant coefﬁments

By the general theorem we have

f dx@(xy( ______ ) y aof(e)ole(@)} . — (T

—
+x—Al r—A,

in which, on account of the distributive character of the symbol O, we may resolve ¢(z)

into its component terms, and give to © in succession the respective interpretations
which they afford.

The component terms of ¢(z) will be of the forms a2’ and ;» ¢ being an integer.

_*
(@—p)’
We have just considered the effect of the first class of terms, and it only remains to
consider that of the second class.

MDCCCLVIL 5k
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Now errL] !
l_(.l'—]l)z U—Z'—I-L""i' n

x—2A x—MA,

_ a <d>l“1 1
1.2..6—~1)\de ”_]H'Zﬂ““”“*‘ ay

—I—-C:}t e a @, s
(@—h)i( 2—v— e
x—Ay X — Ay

‘ . . . 1 .
the former of the two terms in the second member being the coefficient of ——j, n the

development of the function in ascending powers of ¥ —4.
It is evident that the latter of the terms in the second member vanishes; for the

first term of the development in descending powers of & being ;;;, there will be no term

of the form % Hence we have merely to consider the term
a d\"' 1
————1_2“(2._1)-(%) N

H standing for

If i=1, (8.) becomes

Let ¢=2, and (8.) becomes

dH
dh
(v—H)¥

{‘Zf? (@

1.2 (wv—H)? (v—H J

a

If i=3, (8.) becomes

Hence, generally,
a -t H H;
1.2..(¢—1 kdb) v—H ’v—-il+(v—IQ-I)9“+(U_H)i’

H,, H,, .. H; being independent of v. The second member of the above equation, on
addition of its several terms, becomes a rational fraction whose denominator is (v—H)',
and whose numerator is a rational and integral function of » of an order not higher than
t—1. Hence the theorem is demonstrated.

35. The conclusion to which these investigations lead is a remarkable one, and may
be thus expressed. The evaluation of the definite integral

® Potpy@ +pox®. . +piat ! ) n
y-wqo+qxw+qew9-- +qjmff(x_w-—>n_m—lg _w—An)dx
is reducible to that of a definite integral of the form

© P +Pw+Pp?.4+Po
@, Qerayr. a0,
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Py, P, ..Q,, Q,.. being constants whose values in terms of pi, Pos -- Qi Qa-- can always be
Jinitely determined.
As particular examples of the above, we should have

f_‘” dx f( _____ m) _ S — f(v)d'v' -

fh— 2 h—nx,

W% \_ T A f)dv _
PR w2l
LN R T,

In the last theorem the particular case in which A=2,, the function f{v) being at the
same time supposed small for very large values of v, is interesting. We see that as A

approaches A, the terms(h_‘fl}\ E and hi’
1

5 become large in comparison with those with
1

which they are connected by addition. Thus the second member approaches the value

a ©  flo)dy
= I)\)S ( ) y S)dv,
—00 h }\l
so that in the limit

{7t (o= =) = s

It may be worth while to verify this theorem in a particular instance. We have from it

St (o) =] fwav

Now assume in the first member

—a .
z—r—d

The transformed integral is easily found to be
1 a
As to the limits, when # varies from —oo to A, y varies from A to oo ; and when x varies

from A to oo, % varies from —oo to A. Thus, by mere transposition of the two portions
of the integral the limits of y become the same as those of #, and we have

j‘ ol (v—35) f yf (=55 —~f flw)do by (2.), art. 32.

As a particular deduction from the above we shall have.
[ Setearten,
. o ® [/
which may also be verified by differentiating (5.), art. 32, with respect to . We are
permitted thus to differentiate with respect to @, because the function under the sign of
integration does not become infinite within the limits. This condition must be strictly

attended to in all similar attempts at verification.
bx2
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Srdly. From the value of any known definite integral, we can, by the general theorem,
deduce either the values of other definite integrals taken between the limits —oo and oo,
or relations among the values of those integrals taken between other limits.

To accomplish the first object, we have only to transform the given integral into one
whose limits are —oo and oo, and then apply directly the general theorem. The method
requires no illustration.

To accomplish the second object, we must express the function under the sign of
integration, not as a continuous function taken between the given limits, but as a dis-
continuous function taken between the limits —co and oo, the character of its discon-
tinuity being such, that for all values within the géven limits of integration it shall
assume the form specified, and for all values without the given limits shall vanish.

Thus ]etj ?f(@)d@ be the definite integral whose value is given. We may extend the
Fd

integration from —oo to oo, provided that we regard f{v) as vanishing when v falls
without the limits p and ¢. 'We shall thus have

j:,f<x_xf-l)\, . _wf—n)\) dx:ﬁ:f(v)dy =£qf(v)dw,

a a - a
L vanishes whenever £ ———..— falls without
2= 2—A, z—

provided that f (x—
the limits p and ¢. Let the roots of the equation

a @
r—A x—-—An_p’

I

taken in ascending order of magnitude, be p,, p,,..p,.,, and the roots of

a, an
2= Ta—a— 1

taken in the same order, be ¢,, ¢,..¢,.,. We suppose A,, A,,..4, also to be in ascending
order of magnitude. Thus (art. 30) p, and ¢, lie between —oo and 2, p, and ¢, between
A, and A, and so on. Also ¢, is greater than p, ¢, than p,, &c. Hence we see that

xi‘ Al--—wi"An will only fall within the limits p and ¢ when & falls either between

p, and ¢,, or between p, and ¢,, &c. Thus we have in fact

‘fp dxf<-76’-— =" —xi'lA”> = qu(v)dv,

3

U —

and still more generally, ¢(z) being a rational function of «,
1

zj; iigb(x)f<w—w . —wi’}) dx=‘£ qdvf(v)e[go(x)]v : =

—.Z‘ .e
+.z'—}\l ta—n,

which is a reproduction of (5.), art. 30. I deem it, however, an important fact, that in
the comparison of functional transcendents, formulee involving the sign of summation
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may be dispensed with; a more general conception of the nature of a function supply-

ing their place.
36. One remarkable theorem must still be noticed. Since

sinx:a:(l—i—?) (1-—;—;) <1—§“;2),_’~

we have, on taking the logarithms of both sides and diﬂ'erentiating,

1
; COt'Q’__-E .Z'+7r+w-—1r+x+27:
Hence

1 1 1 1 ~
r—cotr=0——— — —_ — &ec.

x x+wm x—7w 2427
Whence, by (2.), art. 32, ‘

j:dxf(x— cot &)= y " aofto).

The result may however be generalized. For from (1.),

@, 00t (T—n)=_— - +x—A R ey —7r+ &e.
Taking the sum of any series of such terms, we shall evidently have

x—a, cot (x—2,)—a, cot (r—2,) .- —a, cot (x—A,)

— a ay, Cay a,
—Y T e—n 2—A, 2+T—A ztm—n,

which agrees in form with the function under the sign fin (2.), art. 32.

jm cla:f{x—a;cot(x—h,)--—ancot(x—xn)}z oodqgf(v). .

If we treat in the same way the theorem

4 2 4 2 4 2
cosx:(l——%) (1—#)(1—‘5—%)..,

we shall arrive at the theorem

j‘_:dxf {v+4a, tan (x—2,)-- 4a, tan (2—2,)} =j‘_:dvf(v).

Hence

(1)

(2.)

(3)

(4)

Essentially, however, this result is involved in (3.), the analogy of which with (2.),

Art. 32, will be most apparent if we place it in the form

j _i, daf {x—tan (Zal- A)" " tan (;n_ ) } =j'_: dvf{(v).

As before, the quantities a,, @, .., must be positive.

The verification of these theorems by some independent method seems desirable.



790 PROFESSOR BOOLE ON THE COMPARISON OF TRANSCENDENTS, WITH

Application of the General Theorem to the evaluation of multiple definite integrals.

37. The form in which multiple definite integrals present themselves in the applica-
tion of mathematics to natural philosophy, is usually the following. The value of a
triple integral,

WWolx,y, 2)dwdyde, . . . . . . . . . (L)
is required to be found, the integration extending, in some instances, to all positive
values, but more generally to all values whatever of the variables #, y, 2 which satisfy a
condition

Yo, y,2)=1. . . . . . . oo oo (2)
The most general ‘method of treating this class of problems is due to M. LrJEUNE
Diricurer. It consists in converting ¢(#, y, z) into a discontinuous function which vanishes
whenever the variables a, y, #z transcend the limits assigned in (2.), and which is equal to
o(z, y, z) whenever those variables satisfy the above condition. This transformation
being effected, we are permitted to regard the integrations relatively to a, 7, z as inde-
pendent, and as individually taken between the limits —co and oo .

From this circumstance the progress of our knowledge of multiple definite integrals
must be in some degree coordinate with the extension of our command over single defi-
nite integrals taken between the limits —co and co. T propose in this section both to
illustrate, by one or two examples, the theory of multiple integrals as above stated, and
to show how it gains extension from the theorem of definite integration demonstrated in
the preceding pages. :

There are several different forms in which the application of the principle of discon-
tinuity to the evaluation of multiple integrals may be presented. The form which I
shall adopt in this paper is similar to one originally given by me in the Transactions of
the Royal Irish Academy (vol. xxi. pt. 1), but is more convenient in application. It
depends essentially upon the employment of Fourier’s theorem, viz.—

1

flx) =;jmw ﬁwda .dv.cos (av—av)fla).

If we write the cosine in its exponential form, we have

fla)=rn ﬁfdadv{sm—w—“l+g~<av—wv>“—“'}f(a).. N G

Now by known theorems

) %w: w _z‘;w:i w
& i1, —twV—1__ ¢ =1 twY =1
= I‘(i)j:)dw'w g =710 Odw.w g N €D

Multiply the terms of (3.) by those of (4.) taken in the same order, and, converting the
exponentials into sines and cosines, we have

fgf)zwg(i)j:j:wﬁwdadvdwcos (av—xv——tw—l—%)wi‘f(a),. oo (8

the theorem employed in the Irish Transactions.
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*

Now v remaining unchanged, let w=vs. Then transforming in the usual way, we have

dvdw=vdvds,
Whence, on substitution,

i ﬂw @ (.w.ﬁy dadvdscosl(a—.z ts)o+o }vs’”f(a) N (D)

In the application of this theorem to the reduction of multiple integrals,  and ¢ will be
replaced by functions of the variables involved in those integrals. Its advantages are
the following. Like Fourier’s theorem, from which it is derived, it enables us to ex-
press any species of discontinuity in the function f{#). Thus if f{) is to vanish for all
values of 2 which lie without the limits p and ¢, we have only to substitute p and ¢ for
—oo and oo in the integration relative to @. At the same time the theorem presents a
and ¢ in a functional connexion, which in all the most important cases renders possible
the subsequent integrations without any new transformation.
One subsidiary theorem remains to be noticed. Since we have

e ‘ wh T
j dy cos (aicy2)=—c; coS (“i;) ,

we have, by successive applications of this theorem,

jm dy,dy,..dy, cos (a+=I=7c, ;".):Wf;;cos(a—_l—%’) oo (T

38. Example 1st. Let it be required to evaluate the multiple definite integral

k S, + Ly .+ Lay)
V=S- .d.’,b'lddi‘g. .dafn{hg_l_ (al_xll)gi'_ (CIZ'Q—.Z’Q)Q.-—'- (an_xn)g}p . . . . . . (1.)

the integration extending to all values of the variables which satisfy the condition

Zx1+lzx2+lxp R ¢

If for convenience we represent &, +ly,..+0®x, by =lz, and (a,—,)’+(2.—a,)"..
+(a,—,) by =(a,—a,)*, we have by the theorem (6.),

B Loy + Lxg o+ Lz,

2+ (=2 + (ag—29)*. . + (an— @)}

N T P

The conditions relative to the limits will be fulfilled by introducing p and ¢ for —oo
and o in the above. Effecting this change and extending, as we then may do, the inte-
grations relative to &, #,..%, from —co to oo, we have

1 = ” iat—1
Vzmj; 5; Afodadvdsvs "Aa)T,
where szvm ..dxldw2. .dx, cos {(a—iﬁs— 3(La,~+s. a,é—a::))q)—l—i f}-

Now lx,+s(a,—a )2—-s< —0, +28) +l0,— ﬁ_sg/,.+la S 1f Y, =&,— +~lﬁ. Sub-

2s
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stituting and observing that the limits of ¢, are — oo and oo, we have
T=§m .. dy,dy,. .dy, cos {(a——lfs—E syf+l,.af—£’>)v+ig}

:jm - dy\dy,. . dy, cos { (a—h28— 3la,+ %>v+ 2@sy3+g}.

2l

Let o=Ms+3l.a,—* = (3.)

{(a—-cr)v-[—ig—ng},

Then sz:. .dy,dy,. . dy, cos { (a—o)v+Svsy2+1¢ g} =

whence

(vs)?

s

V= 7'2 j; 5' dadvds =3 $~5 cos {(a—-a)v-l—( 2/2}f( )_ 5 dss75Q,

where

= 717 ‘: :dadv ¥'~3 cos {(a-—a)7;+ (—;);i}f(a)

[0

= (———— g}rj;qj;wdadv cos {(a—o)} f(@)
= (=)o)

by FouriEr’s theorem, f' (s) vanishing when o does not fall within the limits p and ¢.
Thus, finally,

,”?2— © -2 d\‘ /
V_F@yodss %) o) . L (4)
the fully expressed value of ¢ being

2 2 2
o=h2s+llal+l2a2..+lna,,——lL+lZ‘s'+l".. ()

We may remark, that as
io_'_ 2 l?+lﬁ.-+lf,
ds_k +

452 ’

o increases with s. As s varies from 0 to oo, o varies from —oo to co. Thus, whatever
may be the values of p and ¢ within which the variation of ¢ is confined, there will exist
corresponding positive values within which the variation of s will be confined, and those
limits must take the place of 0 and oo in the expression of (4.).

39. In strictness there is no need of referring to the limit in the statement of general
theorems like the above involving an arbitrary symbol of functionality. The consistent
interpretation of that symbol will suffice. Thus the results at which we have arrived
are virtually included in the theorem

5':;. .dxldx2. . dxn{/lg f(l]’l'1 +lﬂ2..+lyﬂ’ﬂ)( n_xn)a}i (z S‘ ds. Si 2 k_ \)‘—Ef(a), (6)

+ (4 —21)* + (ag— )+ + (@,

o having the value given above. For if /2,44, -- +1,2, is confined within given limits,
Sll&, 41w, - +1,2,) may be regarded as vanishing whenever ,#,+1,2,-- 41,2, transcends



CERTAIN APPLICATIONS TO THE THEORY OF DEFINITE INTEGRALS. 793

those limits, and therefore, by consistency of interpretation, f{s) as vanishing whenever
¢ transcends the same limits.

40. T shall not enter into any discussion of the above solution, but shall briefly point
out in what way it may be generalized by the theorem of definite integration of Art. 32.
It is evident that if we change in (6.)

. b, b, b
x, Into x,— —_— co— s
1 Vozy—A 2=, &= A,
. o c, Cm
2, into o,— — co—
? T Zg—p Ze—pg Zg—pom’
&e. &e. &e.

or into any of the remarkable forms thence derived, Art. 36, leaving dx,dz,.. dz, un-
changed, the actual value of the multiple integral will be unaltered. Thus, as a par-
ticular illustration, if we suppose

e sm (e
i s )

the integrations being limited only by the condition

(= o)

3

V= mozxdydz {

we should find

V=7 (E)S ds. s"‘"“(‘i_ )"":Tf(a), |

24+ m24n?
4s ’

provided that f{¢)=0 when ¢ does not fall within the limits 0 and 1.
41. Example 2nd. Let

f{l“’<w,+ z> 0 xi+a—f‘)}
V=(..dnd,..d “ ( o

" 2 2 b 2 2 b?& P
ik +my w1+5:—i, oy, wn+z—ﬁ

the integration extending to all values of the variables which satisfy the condition

lf(ae+§-%>.- +lz(x:+%)i1.

Here, after reductions similar to those which have been exemplified in the preceding
problem, but more complicated, we find

. d \"7
”-:;S ds.s-1 (—(7; T 40)
L(i)do @ +mis)te. (2 +mis)t
MDCCCLVIL. 5L

where
o=la+mb+nc—

V= - (1)
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wherein o=h2s42(B+mis W (EBa2+m2bis, )+ - - +2(B4-mis P (Bai+m2b2s)t,
(o) being supposed to vanish when ¢ transcends the limits 0 and 1. This theorem
admits of the same kind of generalization as the preceding one. It was communicated
by me, some years ago, to Mr. CaYLEY, and published by him, at my desire, in Liov-
VILLE'S ¢ Journal,” vol. xiii. ‘

If in the above theorem we make ¢,=0, .. a,=0, we have an expression for the value
of the multiple integral

S dx,dz, .. dz, Sl 4+ Gale + L)
e Wl PR n

2 g 27
{k2+m? (wﬁb—fz) +mi<wi+%§> }
& n

the integrations being extended through the mass of the ellipsoid whose equation is
Lot Lo, =1.

The following example, originally published by me, but without any intimation of its
possible extension by means of the general theorem of definite integration, in the
memoir already referred to in the ¢ Transactions of the Royal Irish Academy, is of great
practical importance.

42. Example 3rd. Required the value of the multiple integral

(i)
AN Coe (L)

{72+ (0,=2)2+ (a— @)% + (an—a)?}*

V=/..dvdg,..dx,

the integrations extending to all values of the variables which satisfy the condition

‘1’2 .Z;2 wi:
k_%+}z_§+?<(2)

Here V will be found by integrating with respect to a,, @, ..&, between the limits
—oo and oo the expression

WPU) jm “dadvds vs cos {(a-—i\'g: _._s<k2 -|-,2(a,.-x,.)2) >v+ 2—275} fla).

Hence changing, as before, the order of integration,

1 1{voe (Pao .
V= m)j;ﬁ j; dadvds v's~'f(a)T,

where
...f Jdxdxz,..dx, cos{(a—k’s——u< +s(a —-x) ))@—l— }
Now, , .
R e
if we make
yoma,m 120

1+k,s
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Substituting and integrating with respect to 7,9,..7, between the limits —oo and co, we
have

2 2
T Mgl cos{(a—kzs——z arsr)H_ (z—g)g} L (3)
(L 2o)E .. (L4 A2) s 1+ s
whence, if we make
. a’s a’s
o=h’s .. L 4.
+l+/z?s 1442 (4)
we have
100 oo . i—n . N\T |
V_r%_l/z)/za..ﬁ.ngg g dadvds §'~'v""% cos (a—«)+(’“§>2}f(a)
TG Jode Jo (1 +A28)F (L R2s)E .. (1 + A2s)®

:%ﬁsj(uzﬁf S;msw“d“d” JCOS{(“—G)W'I-( >g}f(a)’ - )

ﬁ 0 i ‘ d i_%
_thg ds.s 1(—@ )

L@ ) b +isb .+ a2s)t

Here ¢ increases continuously with s. As s varies from 0 to o, ¢ also varies from
0 to co. To any positive limits of ¢ will correspond positive limits of s, and these, as
will hereafter appear, will in certain cases replace the limits 0 and oo in the expression
for V.

It is also deserving of note that ¢ may be placed in the form

a a2

a; a I X
o=t B s S
TR A
7 7

which only differs by a constant term from the form of the function +J in the generalA
theorem of definite integration, It follows at once from this that all the values of s
corresponding to a given value of ¢ will be real and that only one of them will be
. . . . 1 .
positive, the others lying between limits expressed by —co, »—-/-213, o '];lg, ©+ = Supposing
' 1 2
these ranged in order of ascending magnitude.

The above example admits of the same genelahzatlon as the first which we cons1dered
The value of V remains unchanged if, both in the original integral (1.) and in the equa-
. a] ag am
—M @y —A, @ —A

tion of the limits (2.), we substitute z,— for &,, with similar but

not necessarily the same transformations for z,, #,..x,, leaving dz,, dz,.. dx, unaltered ;
or if we employ the derived transformations of Art. 36.

T do not conceive that these extensions possess any kind of prospective value or
importance, beyond what must attach to all real additions to our knowledge of the
Integral Calculus. Upon such questions it is, however, almost always unsafe to specu-

512
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late. We can do little more than address ourselves patiently to follow the tracks which
open before us, without attempting to prescribe their direction or conjecture their end.

The interpretation of the formulee which have been arrived at in this section is so far
distinct from the general course and design of the paper, that I have thrown into a note
such observations as I have to offer upon the subject. And I have the rather taken this
course, because those observations have been to some extent anticipated in a former pub-
lication. See Note B. ‘

I have not attempted the further extension of the theory of multiple integrals, which
would seem to be involved in the general theorem of Art. 32, when other values than
unity are assigned to the function ¢(2). Neither have I attempted to extend that
theorem to the case in which ¢(z) is rational—a case evidently of some importance
from its formal connexion with the last member of (5.).

Note A.

On the Conmexion between the Symbol © and Caveny’s Symbol £, employed in
the Caleulus of Residues.

It has been explained that the operation denoted by the symbol & is equivalent to
that portion of the operation represented by © which depends upon the ascending
developments of the subject function. ‘There is, however, a difference in the mode of
statement.

2
Thus £ [(—w—_—tjf,(—x—:mwould‘ denote, according to CavcHY’s definition, the sum of the

@ta? o (@b
(x+a—0b) (#+b—a)%’

in ascending powers of #. This would be the same as the sum of the coefficients of

1 1 . . . T .
——, and ——; in the respective ascending developments of the primitive function

2
(}:‘)ﬁgm, in ascending powers of #—a and £—»b respectively. The operation 6 would

and

coeflicients of % in the developments of the respective functions P

add to the above the coefficient with changed sign of i in the development of the same

function in descending powers of . ‘

We shall perhaps best exemplify the connexion thus established between the two
symbols, by applying the new symbol © to the solution of some of the problems which
Cavcay has treated by the Calculus of Residues. I select for the purpose,—1st, the
problem of the integration of linear differential equations with constant coefficients;
2ndly, the problem of the integration of rational fractions.

Both these applications depend on a transformation of the rational function f{v).

1st. It follows from the subsidiary theorem (6.), Art. 13, that if we have

v—2=0 . . . . . . . . . . . 1)

as an equation connecting & and v, then
1

Hfle)=0lf()]; =
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But since from (1.)  has only one value, viz. v, it is evident that Sf{(#)=#{(v). Hence

f(v)ze[f(x)]vix. T |

d . . . . . .
Now let £ (%>u=U represent any differential equation with constant coeflicients, ¢ being

the independent, » the dependent variable, and U a given function of . To secure the

utmost generality, I will suppose f(ﬁ@) a rational fraction. Thus if the equation were

Pu, _dU ,
e tu=—, we should have . %_2 1

J <a§) =g
df

Now
= {f(%)}"U:e[ Fley)(E—o) " Uby(2) =6[fa) Je*{FUas+4(x)}, (3)

J(2) being an arbitrary function of #. This is the complete solution of the differential
equation proposed. The reader will have no difficulty in applying it to particular cases.
The arbitrary constants have their origin in the complementary function «(z).

In the Calculus of Residues the theorem corresponding to (2.) is the following :—

e 2C)
fy=eL ¢ [x]k\l”_m) @)
The first term in this expression for f{v) is equivalent to the result of the first part of
the operation © in the second member of (2.), viz. that which depends upon the develop-
ments which are effected in ascending powers of the simple factors of the denominator
of f(z). The second term is a transformation of the result of the second part of the
operation ©. It would be more convenjently expressed in the form

,v—w

The solution of the equation f %u: U, furnished by (4.), will evidently be

1,./1
'f -] 8 0
u:E[f(a:)“]s"’{fs'“"Udé—l—«.L(m)}—8"”[$3”)e”{§e‘;Ud9+x}/(x)}, .. (5)

() being an arbitrary function of 2.

‘When, as indeed is usually the case, f(d%) is a rational and integral function of the

symbol L—%, the second member of (5.) reduces to its first term. The symbols © and &

then become identical.
2ndly. From the equation v —2=0, we have, by the general theorem'of transformation,

() de=0[ ()] 52
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Whence, # having only one value in terms of v,
dv
J)dv=6[fla)]; =
§fw)dv=0[f(2)]{log (v—a)+¥H()},

J(2) being an arbitrary function of #. Tt is easily seen that ©[ f{z)]J(2) may be repre-
sented by C, whence )

{f@)dv=0[ f{x)]log w—a)+C. . . . . . . . (6)

CavcHy has very extensively employed the Calculus of Residues in the evaluation of
definite integrals taken between the limits 0 and oo. These applications are among the

and integrating,

most valuable portions of his writings, ~ They have no connexion, however, with the
researches of this paper, and I have not even examined whether they would be in any
degree generalized by the adoption of the symbol ©.

_ Nore B.
On the Interpretation of the Formule for the Evaluation of Multiple Integrals.

The three principal formule, (4.) art. 88, (1.) art. 41, and (5.) art. 42, evidently pos-
sess a common type. In each of them we recognize under the sign {, a function flo)
which may be discontinuous within the limits of integration, and which is at the same
time subject to an operation of general differentiation. This is a combination which is
at least unusual in analysis. I purpose to consider here some of the questions of inter-
pretation which it suggests. To some extent, indeed, these questions have been con-
sidered in my previous memoir, already referred to; but one of the most important of
them, the effect of discontinuity in the function f(s) upon the integral in which it is
involved, admits of being presented in a more satisfactory light. I do not propose to
enter upon a complete investigation of the latter question, but only to examine one or
two special and well-marked cases, in the hope of directing the attention of others to the
subject.

When there is but one variable, and the index of differentiation is 0, the formule
reduce in effect to ordinary integral transformations. And it is quite worthy of obser-
vation, that in this way the formula (4.), Art. 88, leads to known modular transformations

of the elliptic functions. Thus if we make n=1, h=1, i:%, a,=0 and drop the suffix

ffﬂ:}_’i’f) f—f() T € 5

2 . o .
where s=s—7- and Jf(s) vanishes when ¢ transcends the limits of /. But this amounts

to saying that 2
e i (%)
j ¢ +wQ)*“5 s

from x, and /,, we have

9
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provided that -

2
lo=s—L,
4s

1
V1 +lgw2,

fv(1+x2 (1+Pa?) (\/H( 2)rj‘\/ ( _>S+34

The second member is a function of the same kind as the first, differing only in the
constants. If we assume s=m¢, we can so determine m as to reduce the equation to the
form

a result easily verified. Now let f{lx)=

we have

) . y "“‘—LL—-"—:L ——t-——“—a—‘“' . . . . . . . (2.)
V(1422 (1 +Pa?) vV (1+ &)1+ 1%
‘We shall find ‘
‘ _ 2 , 1= v1=P
FIA VIR Tl VIt B’

the relation between & and ¢ being

t=0%an/ 2 +1).
If in the above we make #=tan ¢, t=tan d, 1 — =7~ 1—1"=4* we find

de _ -
Vm_l+hfx/lhm’ Coe e (3
.provided that
1— V1I—#

=T Vg and tan (9=/\/i—iz (tan ¢4-sec @).

These are of course known relations.

In the following example, which is valuable only for the sake of the principle involved,
the differential coefficient of a discontinuous function occurs under the sign of integra-
tion.

. . 3
In the same equation (4.), Art. 38, let h=0, ¢=3, n=1, /,=1; then dropping the

suffix from the single variable retained, we have

jﬁw)‘?_% (= @)

. 1 , . ..
wherein s=a—_- and f{s) vanishes whenever o transcends the limits of 2. Suppose

those limits 0 and 1, and let & be greater than 1. Now ¢ and s increase together, and

S=4la—e)’ Hence ¢=0 gives s=£&-, and ¢=1 gives 324*(5}:1“)' Therefore
! daf(x) ., d ., ‘
(=2 asgflo) . . . B

provided that fle) be regarded as a discontinuous function defined in the followmg
manner, viz.—
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1

From s=0 to s=_, Jfle)=0. . . . . . . . . . (6)
1 1 1

From s=; to s=7—5 f(a):f(a—g). N (S

From S=ZZ£—"I tos=ew flo)=0. . . . . . . . . . (8)

Let us now examine the corresponding values of the element ds ;g; f(o) under the sign of
integration in (4.).
1st. From s=0 to s=11- that element is 0 by (6.).
a

2ndly. At the point s= 4% we have
d ds d
ds %f(d’):go—, %f(a')ds. e e e e e e e (9.)

But = f(s) ds is the increment of f{s) corresponding to an infinitesimal increment ds in

the value of s. At the break, where s=$, f(s) changes in value from 0 to f{0), the

o el 1
initial value of f° (“_4_3

be, provided only that it is infinitesimal. Hence at this point we have

d ds
U 2 D) =7 0= AO)=1 3

3rdly. From s=zla to 8=21QTI—T), ds %_f(a):dsf’(a—-}—)

and o=1, we find ds >~ f(a’)_ 4(‘1]111))2

), and the increment of f{c) is f(0), whatever the value of ds may

4thly. At the second break, where s=-——= (o= ! )
othly. From s= HaL—ﬁ to s=co we have ds f(a):O. Thus on recapitulation
“.d
[0
comprises two finite elements whose sum is

fO) A1)
42" 4(a—1)

and a series of infinitesimal elements which give by integration

frure-2),

whence (5.) becomes “

el =Tt} oo

Now this result may be verified by integrating the first member of the equation by parts,

and transforming the integral which remains by assuming r=o— ;:;-
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I think that this example very clearly shows, that, regarding the integral

J, (@) 7

as made up of elements some of which are finite and perfectly determinate in value, the
others infinitesimal and subject to the conditions of ordinary integration, we can inter-
pret the general theorem (4.), Art. 38, in accordance with known truth. In determining,

as we have done, the value of the element ds( ) f(c) at each break in the discontinuous

function, we attach no new signification to a differential coefficient. We regard that
o . A

element as the limiting value to which As+ f{s) approaches as As approaches to 0. In

the present instance this value is finite. Usually it is 0.

The following examples, which are adopted with some improvements from my previous
memoir, will illustrate the more important applications of (5.), Art. 42.

Let n=3, i=4%, h=0, and let us substitute ,y, z for a,, &,, &5, and a, b, ¢ for a,, a,, a;;
then

— a4 (b —y)*+ (=2
the limits being given by the COIldlthIlS

+ﬁ2+ 2<1

_jﬁ{(adxdydzf(hﬁ 2+ﬁ3> e (11.)

The value of V becomes

o ds.s™% o
V.—:—kllz?kaqrj‘ ( > /) a2
o (1 +h?s)i(1 +h2s)’(1 + hgs)*

wherein o=

+ (13.)

1+h2 +1+k§s 1+h

Now the attraction, according to the law of nature, of the ellipsoid whose equation is
%‘2 yQ 22
and whose internal density is expressed by the function
.Z'Q
dng (h—?
upon the point (, b, ¢), will be—p¢ ;- Observing that, in the value of V given in (12.),

a only appears as involved in &, we have
d do d 2as

=55 7 () fo)=F o) =1 o),
2as f(o')ds
R2s)*(1+ B3s)P (1 + A3s) ¥
=hhohre 5 2as_ s7H(a)ds

1 +k13 (1 4 A3s)* (] +/l2s)?‘(l —l—/@s)ﬁ
MDCCCLVII. oM

av
whence ~¥da =k‘kzhﬁe‘£ (1+25)(1+
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Now f{s) is to vanish when ¢ falls without the limits 0 and 1, and s as falling between

the limits 0 and co is to be positive But from the expression for s, it appears that when

b‘.’
$=00=0, and When §=00 =1 hg +- ﬁ2—]— 35 also o increases with s (Art. 42.), and therefore

passes over the value 1 when 72—2—}-?—1-? > 1, but reaches not that value otherwise.
1 2 3

The former condition is realized when the attracted point is external. Representing
by 7 the value of s for which ¢=1, we have

e gh a“’s+bgs+cgs>
S.Sf ].+Ill?3 1+}l2 ].+il§S (14)

—g—_QkkkargaS L L,
0 (1+ A3) B (1 + A2s) (1 + As)*

7 being the positive root of the equation

+-e=1. . . ... ... (15)

l+/L1.S‘ 1+h§s

‘When the attracted point is internal we have only to substitute co for » in the upper
limit of integration; for all positive values of ¢ then satisfy the condition ¢<1, and
positive values only are admissible.

Both these cases may also be derived from the more general theorem deducible from

(5.), Art. 42,

ds.s=3f iﬂs+ LI X
/{" 1+ Ags 1+Iz

- dudyde ' S
2khh3
edafﬁ{,ﬂ (a—2)*+ (b—y)*+ (c—2)*} - (1+ﬁ?s) (1 + ) (L + st

where 7 is the positive root of the equation

i&2s+1+,zz + —+

1+h23 (17.)

1+k3s—

When / approaches to 0 this root approaches to the positive root of the equation (15.) if
bQ 2 . . 2 bQ 2 .
%—%-{-]73-1—2—3 is greater than 1, but tends to o if %+}l—2+%5 is equal to or less than 1.
1 2 3

If f(o)=1, the expressions are easily reducible to elliptic functions and agree with
known results.

Lastly, let the law of force be that of the inverse fourth power of the distance and
equal to ¢. The expression for the attraction on an external point (a, b, ¢) is

o dV
T3 da’
where
Ve g‘j‘ drdydz =27h,h2k3fw 1ds..s%f2(<r) .
{(a—a)2+ (b—y)%+ (c—2)?} % o (L+A3s)E(1 +A2s)*(1 + AZs)*
therefore '
o dfle) _ e do)dfle) _ _2eas  dfle) _ __ 2as  ds_dflo)
3 da 3 da d(e) ™ 3(1+ Ais) d(e) — 3(1—{—/&?.9) die)” ds ’

, (16.)
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Therefore 248 dflo) o
54V __ éwakhkgr W s (18)
T3 da T T3 RN ) R (L R (L Rt
Let 7 be the positive root of the equation
a’s
1+lz?s+1+lz§s+1+lz2

and let the density be uniform ; then f{s)=1 or 0, according as s is less or greater than 7.

Before and after the break, therefore, f ( )0 At the break we have, by the reasoning

of a previous section, -J;is—) ds=—1. We must therefore substitute this value in (18.),

and in the rest of the expression under the integral sign change s into 7. Observing

( +/ )“’+(1 +hgs)2+(1 +lz3 5)
being reduced to a single finite element we may reject the integral sign, we have

P av__ 37r‘oa/t]ﬁ hon®

-3 da a? b? 2 \3 2 \1 2 i.
A+ +/z3n) (1 +Zm)3(1 + hin)¥(1 + Ain)

This result is due, I believe, to Mr. CAYLEY, but was originally obtained by an entirely
different analysis.

It only remains to add, that when the index of differentiation is fractional we must
revert to the first expression in (5.), Art. 42, and effect the integrations separately. The
integration with respect to v may always be performed. The possibility of the two
others will depend upon the nature of the problem under consideration. Thus writing
the expression in the form

__7'; /z/z v v da ds.s='f(a) v n . mya
V= ') jj (L4 Hs)*.. 1+ bs %jo dv.v 2003{(“-—6)0-1-(@—2)2},

it is easily shown that, according as @ is greater or less than o,

j:)wdv.vi‘%cos{(a—vo-)v_i_ (z"';l)g} I\z +l)sm( +1)

(d __o_)z—;-i- 1

n
= - [}
P(g—- 1> (a—o) 2 *!

by a known property of the function I.  The latter form gives

that this substitution converts %SE into 5> and that the integral

r 0,

w2y b (M da.ds.s fla
10 1‘(—-—2)55 (14 B2sP(L 4 Bs)he. (1 Rsh(a—o) T

This transformation, or one in effect equivalent to it, is due to Mr. CAYLEY *, who has
applied it to obtain the value of a remarkable definite integral which occurs in the
mathematical theory of electricity.

# Cambridge and Dublin Mathematical Journal, vol. ii. p. 219.



